Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2009, Volume 9, Number 4, Pages 729–748
DOI: https://doi.org/10.17323/1609-4514-2009-9-4-729-748
(Mi mmj362)
 

This article is cited in 4 scientific papers (total in 4 papers)

Nonuniformisable foliations on compact complex surfaces

Marco Brunella

Institut de Mathématiques de Bourgogne, Dijon, France
Full-text PDF Citations (4)
References:
Abstract: We give a complete classification of holomorphic foliations on compact complex surfaces which are not uniformisable, i.e., for which universal coverings of the leaves do not glue together in a Hausdorff way. This leads to complex analogs of the Reeb component defined on certain Hopf surfaces and certain Kato surfaces.
Key words and phrases: holomorphic foliations, Reeb component, uniformisation, nonkahlerian compact complex surfaces.
Received: May 7, 2008
Bibliographic databases:
Document Type: Article
MSC: 32J15, 37F75, 57R30
Language: English
Citation: Marco Brunella, “Nonuniformisable foliations on compact complex surfaces”, Mosc. Math. J., 9:4 (2009), 729–748
Citation in format AMSBIB
\Bibitem{Bru09}
\by Marco~Brunella
\paper Nonuniformisable foliations on compact complex surfaces
\jour Mosc. Math.~J.
\yr 2009
\vol 9
\issue 4
\pages 729--748
\mathnet{http://mi.mathnet.ru/mmj362}
\crossref{https://doi.org/10.17323/1609-4514-2009-9-4-729-748}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2657280}
\zmath{https://zbmath.org/?q=an:05692624}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273089600001}
Linking options:
  • https://www.mathnet.ru/eng/mmj362
  • https://www.mathnet.ru/eng/mmj/v9/i4/p729
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025