Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2009, Volume 9, Number 3, Pages 665–721
DOI: https://doi.org/10.17323/1609-4514-2009-9-3-665-721
(Mi mmj360)
 

This article is cited in 8 scientific papers (total in 8 papers)

Geometricity of the Hodge filtration on the $\infty$-stack of perfect complexes over $X_\mathrm{DR}$

Carlos Simpson

CNRS, Laboratoire J. A. Dieudonné, Université de Nice-Sophia Antipolis, Nice, France
Full-text PDF Citations (8)
References:
Abstract: We construct a locally geometric $\infty$-stack $\mathscr M_\mathrm{Hod}(X,\mathrm{Perf})$ of perfect complexes with $\lambda$-connection structure on a smooth projective variety $X$. This maps to $\mathbb A^1/\mathbb G_m$, so it can be considered as the Hodge filtration of its fiber over 1 which is $\mathscr M_\mathrm{DR}(X,\mathrm{Perf})$, parametrizing complexes of $\mathscr D_X$-modules which are $\mathscr O_X$-perfect. We apply the result of Toen–Vaquié that $\mathrm{Perf}(X)$ is locally geometric. The proof of geometricity of the map $\mathscr M_\mathrm{Hod}(X,\mathrm{Perf})\to\mathrm{Perf}(X)$ uses a Hochschild-like notion of weak complexes of modules over a sheaf of rings of differential operators. We prove a strictification result for these weak complexes, and also a strictification result for complexes of sheaves of $\mathscr O$-modules over the big crystalline site.
Key words and phrases: Hodge filtration, $\lambda$-connection, perfect complex, $D$-module, Higgs bundle, twistor space, Hochschild complex, Dold–Puppe, Maurer–Cartan equation.
Received: April 30, 2008
Bibliographic databases:
MSC: Primary 14D20; Secondary 32G34, 32S35
Language: English
Citation: Carlos Simpson, “Geometricity of the Hodge filtration on the $\infty$-stack of perfect complexes over $X_\mathrm{DR}$”, Mosc. Math. J., 9:3 (2009), 665–721
Citation in format AMSBIB
\Bibitem{Sim09}
\by Carlos~Simpson
\paper Geometricity of the Hodge filtration on the $\infty$-stack of perfect complexes over~$X_\mathrm{DR}$
\jour Mosc. Math.~J.
\yr 2009
\vol 9
\issue 3
\pages 665--721
\mathnet{http://mi.mathnet.ru/mmj360}
\crossref{https://doi.org/10.17323/1609-4514-2009-9-3-665-721}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2562796}
\zmath{https://zbmath.org/?q=an:1189.14020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271541900007}
Linking options:
  • https://www.mathnet.ru/eng/mmj360
  • https://www.mathnet.ru/eng/mmj/v9/i3/p665
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:353
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024