Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2001, Volume 1, Number 4, Pages 551–568
DOI: https://doi.org/10.17323/1609-4514-2001-1-4-551-568
(Mi mmj36)
 

This article is cited in 264 scientific papers (total in 264 papers)

Gromov–Witten invariants and quantization of quadratic Hamiltonians

A. B. Givental'ab

a University of California, Berkeley
b California Institute of Technology
Full-text PDF Citations (264)
References:
Abstract: We describe a formalism based on quantization of quadratic hamiltonians and symplectic actions of loop groups which provides a convenient home for most of the known general results and conjectures about Gromov–Witten invariants of compact symplectic manifolds and, more generally, Frobenius structures at higher genus. We state several results illustrating the formalism and its use. In particular, we establish Virasoro constraints for semisimple Frobenius structures and outline a proof of the Virasoro conjecture for Gromov–Witten invariants of complex projective spaces and other Fano toric manifolds. Details will be published elsewhere.
Key words and phrases: Gromov–Witten invariants, Fock spaces, Frobenius structures, Virasoro constraints.
Received: April 4, 2001; in revised form October 16, 2001
Bibliographic databases:
MSC: 53D45, 14N35
Language: English
Citation: A. B. Givental', “Gromov–Witten invariants and quantization of quadratic Hamiltonians”, Mosc. Math. J., 1:4 (2001), 551–568
Citation in format AMSBIB
\Bibitem{Giv01}
\by A.~B.~Givental'
\paper Gromov--Witten invariants and quantization of quadratic Hamiltonians
\jour Mosc. Math.~J.
\yr 2001
\vol 1
\issue 4
\pages 551--568
\mathnet{http://mi.mathnet.ru/mmj36}
\crossref{https://doi.org/10.17323/1609-4514-2001-1-4-551-568}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1901075}
\zmath{https://zbmath.org/?q=an:1008.53072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208587600005}
Linking options:
  • https://www.mathnet.ru/eng/mmj36
  • https://www.mathnet.ru/eng/mmj/v1/i4/p551
  • This publication is cited in the following 264 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:1249
    References:131
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024