Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2009, Volume 9, Number 3, Pages 625–663
DOI: https://doi.org/10.17323/1609-4514-2009-9-3-625-663
(Mi mmj359)
 

This article is cited in 20 scientific papers (total in 20 papers)

$\Phi$-modules and coefficient spaces

G. Pappasa, M. Rapoportb

a Dept. of Mathematics, Michigan State University, E. Lansing, MI, USA
b Math. Institut der Universität Bonn, Bonn, Germany
Full-text PDF Citations (20)
References:
Abstract: We define and study certain moduli stacks of modules endowed with a Frobenius semi-linear endomorphism. These stacks can be thought of as parametrizing the coefficients of a variable Galois representation and are global variants of the spaces of Kisin–Breuil $\Phi$-modules used by Kisin in his study of deformation spaces of local Galois representations. A version of a rigid analytic period map is defined for these spaces, and it is shown how their local structure can be described in terms of “local models”. We also show how Bruhat–Tits buildings can be used to study their special fibers.
Key words and phrases: Frobenius module, Galois representation, local model, affine Grassmannian.
Received: October 1, 2008
Bibliographic databases:
MSC: Primary 14G22, 11S20; Secondary 14M15
Language: English
Citation: G. Pappas, M. Rapoport, “$\Phi$-modules and coefficient spaces”, Mosc. Math. J., 9:3 (2009), 625–663
Citation in format AMSBIB
\Bibitem{PapRap09}
\by G.~Pappas, M.~Rapoport
\paper $\Phi$-modules and coefficient spaces
\jour Mosc. Math.~J.
\yr 2009
\vol 9
\issue 3
\pages 625--663
\mathnet{http://mi.mathnet.ru/mmj359}
\crossref{https://doi.org/10.17323/1609-4514-2009-9-3-625-663}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2562795}
\zmath{https://zbmath.org/?q=an:05642270}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271541900006}
Linking options:
  • https://www.mathnet.ru/eng/mmj359
  • https://www.mathnet.ru/eng/mmj/v9/i3/p625
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:305
    References:77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024