Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2009, Volume 9, Number 3, Pages 569–623
DOI: https://doi.org/10.17323/1609-4514-2009-9-3-569-623
(Mi mmj358)
 

This article is cited in 18 scientific papers (total in 18 papers)

Motivic Poisson summation

Ehud Hrushovski, David Kazhdan

Institute of Mathematics, the Hebrew University of Jerusalem, Jerusalem, Israel
Full-text PDF Citations (18)
References:
Abstract: We develop a “motivic integration” version of the Poisson summation formula for function fields, with values in the Grothendieck ring of definable exponential sums. We also study division algebras over the function field, and show (under some assumptions) that the Fourier transform of a conjugation-invariant test function does not depend on the form of the division algebra. This yields a motivic-integration analog of certain theorems of Deligne–Kazhdan–Vigneras.
Key words and phrases: motivic integration, Poisson summation, division algebras, Grothendieck ring.
Received: October 23, 2008
Bibliographic databases:
MSC: 03C60, 11R56, 22E55
Language: English
Citation: Ehud Hrushovski, David Kazhdan, “Motivic Poisson summation”, Mosc. Math. J., 9:3 (2009), 569–623
Citation in format AMSBIB
\Bibitem{HruKaz09}
\by Ehud~Hrushovski, David~Kazhdan
\paper Motivic Poisson summation
\jour Mosc. Math.~J.
\yr 2009
\vol 9
\issue 3
\pages 569--623
\mathnet{http://mi.mathnet.ru/mmj358}
\crossref{https://doi.org/10.17323/1609-4514-2009-9-3-569-623}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2562794}
\zmath{https://zbmath.org/?q=an:1184.03027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271541900005}
Linking options:
  • https://www.mathnet.ru/eng/mmj358
  • https://www.mathnet.ru/eng/mmj/v9/i3/p569
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024