Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2009, Volume 9, Number 3, Pages 469–530
DOI: https://doi.org/10.17323/1609-4514-2009-9-3-469-530
(Mi mmj355)
 

This article is cited in 9 scientific papers (total in 9 papers)

Some enumerative global properties of variations of Hodge structures

Mark Greena, Phillip Griffithsb, Matt Kerrc

a Department of Mathematics, University of California at Los Angeles, Los Angeles, CA
b Institute for Advanced Study, Princeton, NJ
c Department of Mathematical Sciences, University of Durham, Science Laboratories, Durham, United Kingdom
Full-text PDF Citations (9)
References:
Abstract: The global enumerative invariants of a variation of polarized Hodge structures over a smooth quasi-projective curve reflect the global twisting of the family and numerical measures of the complexity of the limiting mixed Hodge structures that arise when the family degenerates. We study several of these global enumerative invariants and give applications to questions such as: Give conditions under which a non-isotrivial family of Calabi–Yau threefolds must have singular fibres? Determine the correction terms arising from the limiting mixed Hodge structures that are required to turn the classical Arakelov inequalities into exact equalities.
Key words and phrases: variation of Hodge structure, isotrivial family, elliptic surface, Calabi–Yau threefold, Arakelov equalities, Hodge bundles, Hodge metric, positivity, Grothendieck–Riemann–Roch, limiting mixed Hodge structure, semistable degeneration, relative minimality.
Received: July 2, 2008
Bibliographic databases:
Language: English
Citation: Mark Green, Phillip Griffiths, Matt Kerr, “Some enumerative global properties of variations of Hodge structures”, Mosc. Math. J., 9:3 (2009), 469–530
Citation in format AMSBIB
\Bibitem{GreGriKer09}
\by Mark~Green, Phillip~Griffiths, Matt~Kerr
\paper Some enumerative global properties of variations of Hodge structures
\jour Mosc. Math.~J.
\yr 2009
\vol 9
\issue 3
\pages 469--530
\mathnet{http://mi.mathnet.ru/mmj355}
\crossref{https://doi.org/10.17323/1609-4514-2009-9-3-469-530}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2562791}
\zmath{https://zbmath.org/?q=an:05642266}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271541900002}
Linking options:
  • https://www.mathnet.ru/eng/mmj355
  • https://www.mathnet.ru/eng/mmj/v9/i3/p469
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:317
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024