Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2009, Volume 9, Number 2, Pages 411–429
DOI: https://doi.org/10.17323/1609-4514-2009-9-2-411-429
(Mi mmj350)
 

This article is cited in 29 scientific papers (total in 29 papers)

BCOV theory via Givental group action on cohomological fields theories

Sergey Shadrinab

a Department of Mathematics, Institute of System Research, Moscow, Russia
b Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
Full-text PDF Citations (29)
References:
Abstract: In a previous paper, Losev, the author, and Shneiberg constructed a full descendant potential associated to an arbitrary cyclic Hodge dGBV algebra. This contruction extended the construction of Barannikov and Kontsevich of solution of the WDVV equation, based on the earlier paper of Bershadsky, Cecotti, Ooguri, and Vafa.
In the present paper, we give an interpretation of this full descendant potential in terms of Givental group action on cohomological field theories. In particular, the fact that it satisfies all tautological equations becomes a trivial observation.
Key words and phrases: cohomological field theory, mirror symmetry, Batalin–Vilkovisky algebras, tautological relations, Givental's quantization of Frobenius manifolds.
Received: March 3, 2008
Bibliographic databases:
MSC: Primary 14J32; Secondary 14N35, 53D45
Language: English
Citation: Sergey Shadrin, “BCOV theory via Givental group action on cohomological fields theories”, Mosc. Math. J., 9:2 (2009), 411–429
Citation in format AMSBIB
\Bibitem{Sha09}
\by Sergey~Shadrin
\paper BCOV theory via Givental group action on cohomological fields theories
\jour Mosc. Math.~J.
\yr 2009
\vol 9
\issue 2
\pages 411--429
\mathnet{http://mi.mathnet.ru/mmj350}
\crossref{https://doi.org/10.17323/1609-4514-2009-9-2-411-429}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2568443}
\zmath{https://zbmath.org/?q=an:1184.14070}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271541500009}
Linking options:
  • https://www.mathnet.ru/eng/mmj350
  • https://www.mathnet.ru/eng/mmj/v9/i2/p411
  • This publication is cited in the following 29 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:447
    References:81
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024