Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2001, Volume 1, Number 4, Pages 539–550
DOI: https://doi.org/10.17323/1609-4514-2001-1-4-539-550
(Mi mmj35)
 

This article is cited in 3 scientific papers (total in 3 papers)

Lower bounds for the number of orbital topological types of planar polynomial vector fields “modulo limit cycles”

R. M. Fedorov

University of Chicago
Full-text PDF Citations (3)
References:
Abstract: We consider planar polynomial vector fields. We aim to find the (asymptotic) upper and lower bounds for the number of orbital topological equivalence classes for the fields of degree $n$. An evident obstacle for this is the second part of Hilbert's 16th problem. To circumvent this obstacle we introduce the notion of equivalence modulo limit cycles. Both upper and lower bounds can be obtained for this type of equivalence. In this paper we use the Viro gluing method to obtain the lower bound $2^{cn^2}$, where $c>0$ is a constant.
Key words and phrases: Planar polynomial vector field, structural stability, orbital topological equivalence, Viro gluing method.
Received: September 27, 2001
Bibliographic databases:
MSC: Primary 37C15; Secondary 37E35
Language: English
Citation: R. M. Fedorov, “Lower bounds for the number of orbital topological types of planar polynomial vector fields “modulo limit cycles””, Mosc. Math. J., 1:4 (2001), 539–550
Citation in format AMSBIB
\Bibitem{Fed01}
\by R.~M.~Fedorov
\paper Lower bounds for the number of orbital topological types of planar polynomial vector fields ``modulo limit cycles''
\jour Mosc. Math.~J.
\yr 2001
\vol 1
\issue 4
\pages 539--550
\mathnet{http://mi.mathnet.ru/mmj35}
\crossref{https://doi.org/10.17323/1609-4514-2001-1-4-539-550}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1901074}
\zmath{https://zbmath.org/?q=an:1123.37303}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208587600004}
Linking options:
  • https://www.mathnet.ru/eng/mmj35
  • https://www.mathnet.ru/eng/mmj/v1/i4/p539
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:195
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024