Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2009, Volume 9, Number 2, Pages 359–369
DOI: https://doi.org/10.17323/1609-4514-2009-9-2-359-369
(Mi mmj348)
 

Lifting central invariants of quantized Hamiltonian actions

Ivan Losev

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
References:
Abstract: Let $G$ be a connected reductive group over an algebraically closed field $\mathbb K$ of characteristic 0, $X$ an affine symplectic variety equipped with a Hamiltonian action of $G$. Further, let $*$ be a $G$-invariant Fedosov star-product on $X$ such that the Hamiltonian action is quantized. We establish an isomorphism between the center of the quantum algebra $\mathbb K[X][[\hbar]]^G$ and the algebra of formal power series with coefficients in the Poisson center of $\mathbb K[X]^G$.
Key words and phrases: reductive groups, Hamiltonian actions, central invariants, quantization.
Received: March 24, 2008
Bibliographic databases:
MSC: 53D20, 53D55, 14R20
Language: English
Citation: Ivan Losev, “Lifting central invariants of quantized Hamiltonian actions”, Mosc. Math. J., 9:2 (2009), 359–369
Citation in format AMSBIB
\Bibitem{Los09}
\by Ivan~Losev
\paper Lifting central invariants of quantized Hamiltonian actions
\jour Mosc. Math.~J.
\yr 2009
\vol 9
\issue 2
\pages 359--369
\mathnet{http://mi.mathnet.ru/mmj348}
\crossref{https://doi.org/10.17323/1609-4514-2009-9-2-359-369}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2568442}
\zmath{https://zbmath.org/?q=an:05642261}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271541500007}
Linking options:
  • https://www.mathnet.ru/eng/mmj348
  • https://www.mathnet.ru/eng/mmj/v9/i2/p359
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:260
    Full-text PDF :1
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024