Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2009, Volume 9, Number 2, Pages 263–303
DOI: https://doi.org/10.17323/1609-4514-2009-9-2-263-303
(Mi mmj345)
 

This article is cited in 31 scientific papers (total in 31 papers)

On the question of ergodicity for minimal group actions on the circle

Bertrand Deroina, Victor Kleptsynb, Andrés Navasc

a Université Paris-Sud, Lab. de Mathématiques, Orsay Cedex, France
b Institut de Recherches Mathématiques de Rennes, Rennes, France
c Universidad de Santiago de Chile, Santiago, Chile
Full-text PDF Citations (31)
References:
Abstract: This work is devoted to the study of minimal, smooth actions of finitely generated groups on the circle. We provide a sufficient condition for such an action to be ergodic (with respect to the Lebesgue measure), and we illustrate this condition by studying two relevant examples. Under an analogous hypothesis, we also deal with the problem of the zero Lebesgue measure for exceptional minimal sets. This hypothesis leads to many other interesting conclusions, mainly concerning the stationary and conformal measures. Moreover, several questions are left open. The methods work as well for codimension-one foliations, though the results for this case are not explicitly stated.
Key words and phrases: ergodic theory, group actions, circle diffeomorphisms, Lyapunov exponents, random dynamical systems, stationary measures.
Received: June 8, 2008
Bibliographic databases:
MSC: Primary 37C85; Secondary 37A50, 37D25, 37E10, 37F15
Language: English
Citation: Bertrand Deroin, Victor Kleptsyn, Andrés Navas, “On the question of ergodicity for minimal group actions on the circle”, Mosc. Math. J., 9:2 (2009), 263–303
Citation in format AMSBIB
\Bibitem{DerKleNav09}
\by Bertrand~Deroin, Victor~Kleptsyn, Andr\'es~Navas
\paper On the question of ergodicity for minimal group actions on the circle
\jour Mosc. Math.~J.
\yr 2009
\vol 9
\issue 2
\pages 263--303
\mathnet{http://mi.mathnet.ru/mmj345}
\crossref{https://doi.org/10.17323/1609-4514-2009-9-2-263-303}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2568439}
\zmath{https://zbmath.org/?q=an:05642258}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271541500004}
Linking options:
  • https://www.mathnet.ru/eng/mmj345
  • https://www.mathnet.ru/eng/mmj/v9/i2/p263
  • This publication is cited in the following 31 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:509
    References:98
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024