Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2009, Volume 9, Number 1, Pages 111–141
DOI: https://doi.org/10.17323/1609-4514-2009-9-1-111-141
(Mi mmj339)
 

This article is cited in 1 scientific paper (total in 1 paper)

Rational Tate ñlasses

J. S. Milne

Mathematics Department, University of Michigan, Ann Arbor, MI, USA
Full-text PDF Citations (1)
References:
Abstract: In despair, as Deligne put it, of proving the Hodge and Tate conjectures, one can try to find substitutes. For abelian varieties in characteristic zero, Deligne in his 1978–1979 IHES seminar constructed a theory of Hodge classes having many of the properties that the algebraic classes would have if the Hodge conjecture were known. In this article I investigate whether there exists a theory of “rational Tate classes” on varieties over finite fields having the properties that the algebraic classes would have if the Hodge and Tate conjectures were known. In particular, I prove that there exists at most one “good” such theory.
Key words and phrases: abelian varieties, finite fields, Tate conjecture.
Received: April 30, 2008
Bibliographic databases:
MSC: 14C25, 14K15, 11G10
Language: English
Citation: J. S. Milne, “Rational Tate ñlasses”, Mosc. Math. J., 9:1 (2009), 111–141
Citation in format AMSBIB
\Bibitem{Mil09}
\by J.~S.~Milne
\paper Rational Tate ñlasses
\jour Mosc. Math.~J.
\yr 2009
\vol 9
\issue 1
\pages 111--141
\mathnet{http://mi.mathnet.ru/mmj339}
\crossref{https://doi.org/10.17323/1609-4514-2009-9-1-111-141}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2567399}
\zmath{https://zbmath.org/?q=an:1181.14010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269218000006}
Linking options:
  • https://www.mathnet.ru/eng/mmj339
  • https://www.mathnet.ru/eng/mmj/v9/i1/p111
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:208
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024