Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2009, Volume 9, Number 1, Pages 57–89
DOI: https://doi.org/10.17323/1609-4514-2009-9-1-57-89
(Mi mmj337)
 

This article is cited in 8 scientific papers (total in 8 papers)

From Ñlausen to Ñarlitz: low-dimensional spin groups and identities among character sums

Nikolas M. Katz

Princeton University, Mathematics, Fine Hall, NJ, USA
Full-text PDF Citations (8)
References:
Abstract: We relate the classical formulas of Clausen and Schläfli for the squares of hypergeometric and Bessel functions respectively, and a 1969 formula of Carlitz for the square of a very particular Kloosterman sum, to the “accident” that for $3\le n\le6$, the “spin” double cover of $SO(n)$ is itself a classical group. We exploit this accident to obtain identities among character sums over finite fields, some but not all of which are finite field analogues of known identities among classical functions.
Key words and phrases: spin groups, character sums.
Received: May 4, 2008
Bibliographic databases:
Language: English
Citation: Nikolas M. Katz, “From Ñlausen to Ñarlitz: low-dimensional spin groups and identities among character sums”, Mosc. Math. J., 9:1 (2009), 57–89
Citation in format AMSBIB
\Bibitem{Kat09}
\by Nikolas~M.~Katz
\paper From Ñlausen to Ñarlitz: low-dimensional spin groups and identities among character sums
\jour Mosc. Math.~J.
\yr 2009
\vol 9
\issue 1
\pages 57--89
\mathnet{http://mi.mathnet.ru/mmj337}
\crossref{https://doi.org/10.17323/1609-4514-2009-9-1-57-89}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2567397}
\zmath{https://zbmath.org/?q=an:05642250}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269218000004}
Linking options:
  • https://www.mathnet.ru/eng/mmj337
  • https://www.mathnet.ru/eng/mmj/v9/i1/p57
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024