Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2009, Volume 9, Number 1, Pages 33–45
DOI: https://doi.org/10.17323/1609-4514-2009-9-1-33-45
(Mi mmj335)
 

This article is cited in 15 scientific papers (total in 15 papers)

Sur la fonctorialité, pour $\mathrm{GL}(4)$, donnée par le carré extérieur

Guy Henniartab

a CNRS, Orsay cedex, FRANCE
b Université Paris-Sud, Laboratoire de mathématiques d'Orsay, Orsay cedex, FRANCE
Full-text PDF Citations (15)
References:
Abstract: Let $k$ be a number field. Henry H. Kim has established the exterior square transfer for $\mathrm{GL}(4)$, which attaches to any cuspidal automorphic representation $\Pi$ of $\mathrm{GL}(4,\mathbb A_k)$ an automorphic representation $\Pi$ of $\mathrm{GL}(6,\mathbb A_k)$. At a finite place $v$ of $k$, the local component $\rho_v$ of $\rho$ gives, via the Langlands correspondence, a degree 4 representation $\sigma_v$ of the Weil–Deligne group of $k_v$. Then $\Pi$ is the unique isobaric automorphic representation of $\mathrm{GL}(6,\mathbb A_k)$ such that, whenever $\rho_v$ is unramified, $\Pi_v$ corresponds, via the Langlands correspondence, to the exterior square $\Lambda^2\sigma_v$ of $\sigma_v$. Kim proves that $\Pi_v$ corresponds to $\Lambda^2\sigma_v$ even when $\rho_v$ is ramified, except possibly if $v$ is above 2 or 3 and $\rho_v$ is cuspidal. We complete Kim's work in showing that $\Pi_v$ corresponds to $\Lambda^2\sigma_v$ at all finite places $v$ of $k$.
Key words and phrases: automorphic representation, functoriality, Langlands correspondence.
Received: March 13, 2008
Bibliographic databases:
MSC: 22E47, 22E50, 22E55
Language: French
Citation: Guy Henniart, “Sur la fonctorialité, pour $\mathrm{GL}(4)$, donnée par le carré extérieur”, Mosc. Math. J., 9:1 (2009), 33–45
Citation in format AMSBIB
\Bibitem{Hen09}
\by Guy~Henniart
\paper Sur la fonctorialit\'e, pour $\mathrm{GL}(4)$, donn\'ee par le carr\'e ext\'erieur
\jour Mosc. Math.~J.
\yr 2009
\vol 9
\issue 1
\pages 33--45
\mathnet{http://mi.mathnet.ru/mmj335}
\crossref{https://doi.org/10.17323/1609-4514-2009-9-1-33-45}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2567395}
\zmath{https://zbmath.org/?q=an:1183.22009}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269218000002}
Linking options:
  • https://www.mathnet.ru/eng/mmj335
  • https://www.mathnet.ru/eng/mmj/v9/i1/p33
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:256
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024