|
This article is cited in 15 scientific papers (total in 15 papers)
Sur la fonctorialité, pour $\mathrm{GL}(4)$, donnée par le carré extérieur
Guy Henniartab a CNRS, Orsay cedex, FRANCE
b Université Paris-Sud, Laboratoire de mathématiques d'Orsay, Orsay cedex, FRANCE
Abstract:
Let $k$ be a number field. Henry H. Kim has established the exterior square transfer for $\mathrm{GL}(4)$, which attaches to any cuspidal automorphic representation $\Pi$ of $\mathrm{GL}(4,\mathbb A_k)$ an automorphic representation $\Pi$ of $\mathrm{GL}(6,\mathbb A_k)$. At a finite place $v$ of $k$, the local component $\rho_v$ of $\rho$ gives, via the Langlands correspondence, a degree 4 representation $\sigma_v$ of the Weil–Deligne group of $k_v$. Then $\Pi$ is the unique isobaric automorphic representation of $\mathrm{GL}(6,\mathbb A_k)$ such that, whenever $\rho_v$ is unramified, $\Pi_v$ corresponds, via the Langlands correspondence, to the exterior square $\Lambda^2\sigma_v$ of $\sigma_v$. Kim proves that $\Pi_v$ corresponds to $\Lambda^2\sigma_v$ even when $\rho_v$ is ramified, except possibly if $v$ is above 2 or 3 and $\rho_v$ is cuspidal. We complete Kim's work in showing that $\Pi_v$ corresponds to $\Lambda^2\sigma_v$ at all finite places $v$ of $k$.
Key words and phrases:
automorphic representation, functoriality, Langlands correspondence.
Received: March 13, 2008
Citation:
Guy Henniart, “Sur la fonctorialité, pour $\mathrm{GL}(4)$, donnée par le carré extérieur”, Mosc. Math. J., 9:1 (2009), 33–45
Linking options:
https://www.mathnet.ru/eng/mmj335 https://www.mathnet.ru/eng/mmj/v9/i1/p33
|
Statistics & downloads: |
Abstract page: | 256 | References: | 59 |
|