Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2008, Volume 8, Number 4, Pages 759–788
DOI: https://doi.org/10.17323/1609-4514-2008-8-4-759-788
(Mi mmj328)
 

This article is cited in 3 scientific papers (total in 4 papers)

On the Kernel of the Affine Dirac Operator

V. G. Kaca, P. Möseneder Frajriab, P. Papic

a Department of Mathematics, Massachusetts Institute of Technology
b Politecnico di Milano
c Dipartimento di Matematica, University of Rome "La Sapienza"
Full-text PDF Citations (4)
References:
Abstract: Let $\mathfrak g$ be a finite-dimensional semisimple Lie algebra with a non-degenerate invariant bilinear form $(\cdot,\cdot)$, $\sigma$ an elliptic automorphism of $\mathfrak g$ leaving the form $(\cdot,\cdot)$ invariant, and $\mathfrak a$$\sigma$-invariant subalgebra of $\mathfrak g$, such that the restriction of the form $(\cdot,\cdot)$ to $\mathfrak a$ is non-degenerate. Let $\widehat L(\mathfrak g,\sigma)$ and $\widehat L(\mathfrak a,\sigma)$ be the associated twisted affine Lie algebras and $F^\sigma(\mathfrak p)$ the $\sigma$-twisted Clifford module over $\widehat L(\mathfrak a,\sigma)$, associated to the orthocomplement $\mathfrak p$ of $\mathfrak a$ in $\mathfrak g$. Under suitable hypotheses on $\sigma$ and $\mathfrak a$, we provide a general formula for the decomposition of the kernel of the affine Dirac operator, acting on the tensor product of an integrable highest weight $\widehat L(\mathfrak g,\sigma)$-module and $F^\sigma(\mathfrak p)$, into irreducible $\widehat L(\mathfrak a,\sigma)$-submodules.
As an application, we derive the decomposition of all level 1 integrable irreducible highest weight modules over orthogonal affine Lie algebras with respect to the affinization of the isotropy subalgebra of an arbitrary symmetric space.
Key words and phrases: affine algebra, Dirac operator, Lie algebra automorphism.
Received: April 2, 2008
Bibliographic databases:
Language: English
Citation: V. G. Kac, P. Möseneder Frajria, P. Papi, “On the Kernel of the Affine Dirac Operator”, Mosc. Math. J., 8:4 (2008), 759–788
Citation in format AMSBIB
\Bibitem{KacMosPap08}
\by V.~G.~Kac, P.~M\"oseneder Frajria, P.~Papi
\paper On the Kernel of the Affine Dirac Operator
\jour Mosc. Math.~J.
\yr 2008
\vol 8
\issue 4
\pages 759--788
\mathnet{http://mi.mathnet.ru/mmj328}
\crossref{https://doi.org/10.17323/1609-4514-2008-8-4-759-788}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2499354}
\zmath{https://zbmath.org/?q=an:05518640}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261829900007}
Linking options:
  • https://www.mathnet.ru/eng/mmj328
  • https://www.mathnet.ru/eng/mmj/v8/i4/p759
    Addendum
    This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:304
    Full-text PDF :2
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024