Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2008, Volume 8, Number 4, Pages 697–709
DOI: https://doi.org/10.17323/1609-4514-2008-8-4-697-709
(Mi mmj326)
 

This article is cited in 1 scientific paper (total in 1 paper)

Invariant Function Algebras on Compact Commutative Homogeneous Spaces

V. M. Gichev

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science
Full-text PDF Citations (1)
References:
Abstract: Let $M$ be a commutative homogeneous space of a compact Lie group $G$ and $A$ be a closed $G$-invariant subalgebra of the Banach algebra $C(M)$. A function algebra is called antisymmetric if it does not contain nonconstant real functions. By the main result of this paper, $A$ is antisymmetric if and only if the invariant probability measure on $M$ is multiplicative on $A$. This implies, for example, the following theorem: if $G^\mathbb C$ acts transitively on a Stein manifold $\mathcal M$, $v\in\mathcal M$, and the compact orbit $M=Gv$ is a commutative homogeneous space, then $M$ is a real form of $\mathcal M$.
Key words and phrases: invariant function algebra, commutative homogeneous space, maximal ideal space.
Received: December 4, 2007
Bibliographic databases:
Language: English
Citation: V. M. Gichev, “Invariant Function Algebras on Compact Commutative Homogeneous Spaces”, Mosc. Math. J., 8:4 (2008), 697–709
Citation in format AMSBIB
\Bibitem{Gic08}
\by V.~M.~Gichev
\paper Invariant Function Algebras on Compact Commutative Homogeneous Spaces
\jour Mosc. Math.~J.
\yr 2008
\vol 8
\issue 4
\pages 697--709
\mathnet{http://mi.mathnet.ru/mmj326}
\crossref{https://doi.org/10.17323/1609-4514-2008-8-4-697-709}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2499352}
\zmath{https://zbmath.org/?q=an:1170.46044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261829900005}
Linking options:
  • https://www.mathnet.ru/eng/mmj326
  • https://www.mathnet.ru/eng/mmj/v8/i4/p697
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:203
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024