Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2008, Volume 8, Number 3, Pages 477–492
DOI: https://doi.org/10.17323/1609-4514-2008-8-3-477-492
(Mi mmj319)
 

This article is cited in 6 scientific papers (total in 6 papers)

A Denjoy Type Theorem for Commuting Circle Diffeomorphisms with Derivatives Having Different Hölder Differentiability Classes

V. A. Kleptsyna, A. Navasb

a Institute of Mathematical Research of Rennes
b Universidad de Santiago de Chile
Full-text PDF Citations (6)
References:
Abstract: Let $d\ge2$ be an integer number, and let $f_k$, $k\in\{1,\dots,d\}$, be $C^{1+\tau_k}$ commuting circle diffeomorphisms, with $\tau_k\in]0,1[$ and $\tau_1+\cdots+\tau_d>1$. We prove that if the rotation numbers of the $f_k$'s are independent over the rationals (that is, if the corresponding action of $\mathbf Z^d$ on the circle is free), then they are simultaneously (topologically) conjugate to rotations.
Key words and phrases: denjoy theorem, centralizers, Hölder class of the derivative.
Received: August 14, 2007
Bibliographic databases:
Language: English
Citation: V. A. Kleptsyn, A. Navas, “A Denjoy Type Theorem for Commuting Circle Diffeomorphisms with Derivatives Having Different Hölder Differentiability Classes”, Mosc. Math. J., 8:3 (2008), 477–492
Citation in format AMSBIB
\Bibitem{KleNav08}
\by V.~A.~Kleptsyn, A.~Navas
\paper A~Denjoy Type Theorem for Commuting Circle Diffeomorphisms with Derivatives Having Different H\"older Differentiability Classes
\jour Mosc. Math.~J.
\yr 2008
\vol 8
\issue 3
\pages 477--492
\mathnet{http://mi.mathnet.ru/mmj319}
\crossref{https://doi.org/10.17323/1609-4514-2008-8-3-477-492}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2483221}
\zmath{https://zbmath.org/?q=an:1156.22017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261829800005}
Linking options:
  • https://www.mathnet.ru/eng/mmj319
  • https://www.mathnet.ru/eng/mmj/v8/i3/p477
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:284
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024