Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2001, Volume 1, Number 3, Pages 457–468
DOI: https://doi.org/10.17323/1609-4514-2001-1-3-457-468
(Mi mmj31)
 

This article is cited in 34 scientific papers (total in 35 papers)

The limit shape and fluctuations of random partitions of naturals with fixed number of summands

A. M. Vershik, Yu. V. Yakubovich

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF Citations (35)
References:
Abstract: We consider the uniform distribution on the set of partitions of integer $n$ with $c\sqrt n$ numbers of summands, $c>0$ is a positive constant. We calculate the limit shape of such partitions, assuming $c$ is constant and $n$ tends to infinity. If $c\to\infty$ then the limit shape tends to known limit shape for unrestricted number of summands (see references). If the growth is slower than $\sqrt n$ then the limit shape is universal ($e^{-t}$). We prove the invariance principle (central limit theorem for fluctuations around the limit shape) and find precise expression for correlation functions. These results can be interpreted in terms of statistical physics of ideal gas, from this point of view the limit shape is a limit distribution of the energy of two dimensional ideal gas with respect to the energy of particles. The proof of the limit theorem uses partially inversed Fourier transformation of the characteristic function and refines the methods of the previous papers of authors (see references).
Key words and phrases: Young diagram, partition of integer, limit shape, fluctuations.
Received: June 20, 2001
Bibliographic databases:
MSC: 05A17, 11P82, 82B05
Language: English
Citation: A. M. Vershik, Yu. V. Yakubovich, “The limit shape and fluctuations of random partitions of naturals with fixed number of summands”, Mosc. Math. J., 1:3 (2001), 457–468
Citation in format AMSBIB
\Bibitem{VerYak01}
\by A.~M.~Vershik, Yu.~V.~Yakubovich
\paper The limit shape and fluctuations of random partitions of naturals with fixed number of summands
\jour Mosc. Math.~J.
\yr 2001
\vol 1
\issue 3
\pages 457--468
\mathnet{http://mi.mathnet.ru/mmj31}
\crossref{https://doi.org/10.17323/1609-4514-2001-1-3-457-468}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1877604}
\zmath{https://zbmath.org/?q=an:0996.05006}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208587500010}
\elib{https://elibrary.ru/item.asp?id=8379078}
Linking options:
  • https://www.mathnet.ru/eng/mmj31
  • https://www.mathnet.ru/eng/mmj/v1/i3/p457
  • This publication is cited in the following 35 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:616
    References:90
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024