Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2007, Volume 7, Number 4, Pages 673–697
DOI: https://doi.org/10.17323/1609-4514-2007-7-4-673-697
(Mi mmj306)
 

This article is cited in 24 scientific papers (total in 24 papers)

Quiver varieties and Hilbert schemes

A. G. Kuznetsovab

a Steklov Mathematical Institute, Russian Academy of Sciences
b Laboratoire J.-V. Poncelet, Independent University of Moscow
Full-text PDF Citations (24)
References:
Abstract: In this note we give an explicit geometric description of some of the Nakajima's quiver varieties. More precisely, if $X=\mathbb C^2$, $\Gamma\subset{\rm SL}(\mathbb C^2)$ is a finite subgroup, and $X_\Gamma$ is a minimal resolution of $X/\Gamma$, we show that $X^{\Gamma[n]}$ (the $\Gamma$-equivariant Hilbert scheme of $X$), and $X_{\Gamma}^{[n]}$ (the Hilbert scheme of $X_{\Gamma}$) are quiver varieties for the affine Dynkin graph corresponding to $\Gamma$ via the McKay correspondence with the same dimension vectors but different parameters $\zeta$ (for earlier results in this direction see works by M. Haiman, M. Varagnolo and E. Vasserot, and W. Wang). In particular, it follows that the varieties $X^{\Gamma[n]}$ and $X_{\Gamma}^{[n]}$ are diffeomorphic. Computing their cohomology (in the case $\Gamma=\mathbb Z/d\mathbb Z$) via the fixed points of a $(\mathbb C^*\times\mathbb C^*)$-action we deduce the following combinatorial identity: the number $UCY(n,d)$ of Young diagrams consisting of $nd$ boxes and uniformly colored in $d$ colors equals the number $CY(n,d)$ of collections of $d$ Young diagrams with the total number of boxes equal to $n$.
Key words and phrases: Quiver variety, Hilbert scheme, McKay correspondence, moduli space.
Received: January 4, 2007
Bibliographic databases:
Document Type: Article
MSC: Primary 14D21; Secondary 53C26, 16G20
Language: English
Citation: A. G. Kuznetsov, “Quiver varieties and Hilbert schemes”, Mosc. Math. J., 7:4 (2007), 673–697
Citation in format AMSBIB
\Bibitem{Kuz07}
\by A.~G.~Kuznetsov
\paper Quiver varieties and Hilbert schemes
\jour Mosc. Math.~J.
\yr 2007
\vol 7
\issue 4
\pages 673--697
\mathnet{http://mi.mathnet.ru/mmj306}
\crossref{https://doi.org/10.17323/1609-4514-2007-7-4-673-697}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2372209}
\zmath{https://zbmath.org/?q=an:1142.14009}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261829500007}
Linking options:
  • https://www.mathnet.ru/eng/mmj306
  • https://www.mathnet.ru/eng/mmj/v7/i4/p673
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024