Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2007, Volume 7, Number 4, Pages 613–642
DOI: https://doi.org/10.17323/1609-4514-2007-7-4-613-642
(Mi mmj303)
 

This article is cited in 24 scientific papers (total in 24 papers)

Poisson geometry of the Grothendieck resolution of a complex semisimple group

S. Evensa, Jiang-Hua Lub

a Department of Mathematics, University of Notre Dame
b University of Hong Kong, Department of Mechanical Engineering
Full-text PDF Citations (24)
References:
Abstract: Let $G$ be a complex semi-simple Lie group with a fixed pair of opposite Borel subgroups $(B,B_{-})$. We study a Poisson structure $\pi$ on $G$ and a Poisson structure $\Pi$ on the Grothendieck resolution $X$ of $G$ such that the Grothendieck map $\mu\colon(X,\Pi)\to(G,\pi)$ is Poisson. We show that the orbits of symplectic leaves of $\pi$ in $G$ under the conjugation action by the Cartan subgroup $H=B\cap B$ – are intersections of conjugacy classes and Bruhat cells $B_{\omega}B_{-}$, while the $H$-orbits of symplectic leaves of $\Pi$ on $X$ give desingularizations of intersections of Steinberg fibers and Bruhat cells in $G$. We also give birational Poisson isomorphisms from quotients by $H\times H$ of products of double Bruhat cells in $G$ to intersections of Steinberg fibers and Bruhat cells.
Key words and phrases: Poisson structure, symplectic leaves, Grothendieck resolution, Steinberg fiber, Bruhat cell.
Received: January 31, 2007
Bibliographic databases:
MSC: Primary 53D17; Secondary 14M17, 20G20
Language: English
Citation: S. Evens, Jiang-Hua Lu, “Poisson geometry of the Grothendieck resolution of a complex semisimple group”, Mosc. Math. J., 7:4 (2007), 613–642
Citation in format AMSBIB
\Bibitem{EveLu07}
\by S.~Evens, Jiang-Hua~Lu
\paper Poisson geometry of the Grothendieck resolution of a~complex semisimple group
\jour Mosc. Math.~J.
\yr 2007
\vol 7
\issue 4
\pages 613--642
\mathnet{http://mi.mathnet.ru/mmj303}
\crossref{https://doi.org/10.17323/1609-4514-2007-7-4-613-642}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2372206}
\zmath{https://zbmath.org/?q=an:1148.53061}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261829500004}
Linking options:
  • https://www.mathnet.ru/eng/mmj303
  • https://www.mathnet.ru/eng/mmj/v7/i4/p613
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024