Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2007, Volume 7, Number 3, Pages 533–542
DOI: https://doi.org/10.17323/1609-4514-2007-7-3-533-542
(Mi mmj296)
 

This article is cited in 3 scientific papers (total in 3 papers)

Higher Lamé equations and critical points of master functions

E. E. Mukhina, V. O. Tarasovba, A. N. Varchenkoc

a Department of Mathematical Sciences, Indiana University–Purdue University Indianapolis
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
c Department of Mathematics, University of North Carolina at Chapel Hill
Full-text PDF Citations (3)
References:
Abstract: Under certain conditions, we give an estimate from above on the number of differential equations of order $r+1$ with prescribed regular singular points, prescribed exponents at singular points, and having a quasi-polynomial flag of solutions. The estimate is given in terms of a suitable weight subspace of the tensor power $U(\mathfrak n_{-})^{\otimes(n-1)}$, where $n$ is the number of singular points in $\mathbb C$ and $U(\mathfrak n_{-})$ is the enveloping algebra of the nilpotent subalgebra of $\mathfrak{gl}_{r+1}$.
Key words and phrases: Lame equation, master function, critical points, quasi-polynomial flag of solutions.
Received: May 13, 2006
Bibliographic databases:
Language: English
Citation: E. E. Mukhin, V. O. Tarasov, A. N. Varchenko, “Higher Lamé equations and critical points of master functions”, Mosc. Math. J., 7:3 (2007), 533–542
Citation in format AMSBIB
\Bibitem{MukTarVar07}
\by E.~E.~Mukhin, V.~O.~Tarasov, A.~N.~Varchenko
\paper Higher Lam\'e equations and critical points of master functions
\jour Mosc. Math.~J.
\yr 2007
\vol 7
\issue 3
\pages 533--542
\mathnet{http://mi.mathnet.ru/mmj296}
\crossref{https://doi.org/10.17323/1609-4514-2007-7-3-533-542}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2343147}
\zmath{https://zbmath.org/?q=an:05251657}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261829400011}
Linking options:
  • https://www.mathnet.ru/eng/mmj296
  • https://www.mathnet.ru/eng/mmj/v7/i3/p533
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:264
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024