Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2007, Volume 7, Number 3, Pages 507–531
DOI: https://doi.org/10.17323/1609-4514-2007-7-3-507-531
(Mi mmj295)
 

This article is cited in 6 scientific papers (total in 6 papers)

Geometry of planar log-fronts

G. B. Mikhalkina, A. Yu. Okounkovb

a Department of Mathematics, University of Toronto
b Princeton University
Full-text PDF Citations (6)
References:
Abstract: The log-front of two curves $P$ and $Q$ in a toric surface is the set of torus elements $\tau$ such that $\tau\cdot Q$ is tangent to $P$. Log-fronts generalize dual curves, wave fronts, and arise naturally in the theory of random surfaces. Our goal in this paper is to prove analogs of Plücker and Klein formulas for log-fronts.
Key words and phrases: Log-front, frozen boundary, Plücker formula, Klein formula.
Received: August 4, 2006
Bibliographic databases:
MSC: 14P99
Language: English
Citation: G. B. Mikhalkin, A. Yu. Okounkov, “Geometry of planar log-fronts”, Mosc. Math. J., 7:3 (2007), 507–531
Citation in format AMSBIB
\Bibitem{MikOko07}
\by G.~B.~Mikhalkin, A.~Yu.~Okounkov
\paper Geometry of planar log-fronts
\jour Mosc. Math.~J.
\yr 2007
\vol 7
\issue 3
\pages 507--531
\mathnet{http://mi.mathnet.ru/mmj295}
\crossref{https://doi.org/10.17323/1609-4514-2007-7-3-507-531}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2343146}
\zmath{https://zbmath.org/?q=an:05251656}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261829400010}
Linking options:
  • https://www.mathnet.ru/eng/mmj295
  • https://www.mathnet.ru/eng/mmj/v7/i3/p507
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:365
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024