Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2007, Volume 7, Number 3, Pages 461–479
DOI: https://doi.org/10.17323/1609-4514-2007-7-3-461-479
(Mi mmj292)
 

This article is cited in 1 scientific paper (total in 1 paper)

Magnetic Schrödinger operator: geometry, classical and quantum dynamics and spectral asymptotics

V. Ya. Ivrii

Department of Mathematics, University of Toronto
Full-text PDF Citations (1)
References:
Abstract: I study the Schrödinger operator with the strong magnetic field, considering links between geometry of magnetic field, classical and quantum dynamics associated with operator and spectral asymptotics. In particular, I will discuss the role of short periodic trajectories.
Key words and phrases: Magnetic Schrödinger operator, dynamics, periodic trajectories logarithmic uncertainty principle.
Received: May 22, 2006
Bibliographic databases:
MSC: 35P20
Language: English
Citation: V. Ya. Ivrii, “Magnetic Schrödinger operator: geometry, classical and quantum dynamics and spectral asymptotics”, Mosc. Math. J., 7:3 (2007), 461–479
Citation in format AMSBIB
\Bibitem{Ivr07}
\by V.~Ya.~Ivrii
\paper Magnetic Schr\"odinger operator: geometry, classical and quantum dynamics and spectral asymptotics
\jour Mosc. Math.~J.
\yr 2007
\vol 7
\issue 3
\pages 461--479
\mathnet{http://mi.mathnet.ru/mmj292}
\crossref{https://doi.org/10.17323/1609-4514-2007-7-3-461-479}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2343143}
\zmath{https://zbmath.org/?q=an:1152.35022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261829400007}
Linking options:
  • https://www.mathnet.ru/eng/mmj292
  • https://www.mathnet.ru/eng/mmj/v7/i3/p461
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:240
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024