Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2007, Volume 7, Number 2, Pages 281–325
DOI: https://doi.org/10.17323/1609-4514-2007-7-2-281-325
(Mi mmj284)
 

This article is cited in 4 scientific papers (total in 4 papers)

Restricted version of the infinitesimal Hilbert 16th problem

A. A. Glutsyukab, Yu. S. Ilyashenkoc

a CNRS — Unit of Mathematics, Pure and Applied
b Laboratoire J.-V. Poncelet, Independent University of Moscow
c Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF Citations (4)
References:
Abstract: The paper deals with an abelian integral of a polynomial 1-form along a family of real ovals of a polynomial (hamiltonian) in two variables (the integral is considered as a function of value of the Hamiltonian). We give an explicit upper bound on the number of its zeroes (assuming the Hamiltonian ultra-Morse of arbitrary degree and ranging in a compact subset in the space of ultra-Morse polynomials of a given degree, and that the form has smaller degree). This bound depends on the choice of the compact set and is exponential in the fourth power of the degree.
Key words and phrases: Two-dimensional polynomial Hamiltonian vector field, oval, polynomial 1-form, Abelian integral, complex level curve, critical value, vanishing cycle.
Received: May 24, 2006
Bibliographic databases:
Document Type: Article
MSC: Primary 58F21; 14K20; Secondary 34C05
Language: English
Citation: A. A. Glutsyuk, Yu. S. Ilyashenko, “Restricted version of the infinitesimal Hilbert 16th problem”, Mosc. Math. J., 7:2 (2007), 281–325
Citation in format AMSBIB
\Bibitem{GluIly07}
\by A.~A.~Glutsyuk, Yu.~S.~Ilyashenko
\paper Restricted version of the infinitesimal Hilbert 16th problem
\jour Mosc. Math.~J.
\yr 2007
\vol 7
\issue 2
\pages 281--325
\mathnet{http://mi.mathnet.ru/mmj284}
\crossref{https://doi.org/10.17323/1609-4514-2007-7-2-281-325}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2337884}
\zmath{https://zbmath.org/?q=an:1134.34019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261829300009}
Linking options:
  • https://www.mathnet.ru/eng/mmj284
  • https://www.mathnet.ru/eng/mmj/v7/i2/p281
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:477
    References:89
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024