Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2007, Volume 7, Number 2, Pages 219–242
DOI: https://doi.org/10.17323/1609-4514-2007-7-2-219-242
(Mi mmj280)
 

This article is cited in 43 scientific papers (total in 44 papers)

Spaces of polytopes and cobordism of quasitoric manifolds

V. M. Buchstabera, T. E. Panovb, N. Rayc

a Steklov Mathematical Institute, Russian Academy of Sciences
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
c University of Manchester, Department of Mathematics
Full-text PDF Citations (44)
References:
Abstract: Our aim is to bring the theory of analogous polytopes to bear on the study of quasitoric manifolds, in the context of stably complex manifolds with compatible torus action. By way of application, we give an explicit construction of a quasitoric representative for every complex cobordism class as the quotient of a free torus action on a real quadratic complete intersection. We suggest a systematic description for omnioriented quasitoric manifolds in terms of combinatorial data, and explain the relationship with non-singular projective toric varieties (otherwise known as toric manifolds). By expressing the first and third authors' approach to the representability of cobordism classes in these terms, we simplify and correct two of their original proofs concerning quotient polytopes; the first relates to framed embeddings in the positive cone, and the second involves modifying the operation of connected sum to take account of orientations. Analogous polytopes provide an informative setting for several of the details.
Key words and phrases: Analogous polytopes, complex cobordism, connected sum, framing, omniorientation, quasitoric manifold, stable tangent bundle.
Received: September 15, 2006
Bibliographic databases:
Document Type: Article
MSC: 55N22, 52B20, 14M25
Language: English
Citation: V. M. Buchstaber, T. E. Panov, N. Ray, “Spaces of polytopes and cobordism of quasitoric manifolds”, Mosc. Math. J., 7:2 (2007), 219–242
Citation in format AMSBIB
\Bibitem{BucPanRay07}
\by V.~M.~Buchstaber, T.~E.~Panov, N.~Ray
\paper Spaces of polytopes and cobordism of quasitoric manifolds
\jour Mosc. Math.~J.
\yr 2007
\vol 7
\issue 2
\pages 219--242
\mathnet{http://mi.mathnet.ru/mmj280}
\crossref{https://doi.org/10.17323/1609-4514-2007-7-2-219-242}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2337880}
\zmath{https://zbmath.org/?q=an:1176.55004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261829300005}
Linking options:
  • https://www.mathnet.ru/eng/mmj280
  • https://www.mathnet.ru/eng/mmj/v7/i2/p219
  • This publication is cited in the following 44 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:616
    Full-text PDF :3
    References:90
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024