Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2001, Volume 1, Number 3, Pages 407–419
DOI: https://doi.org/10.17323/1609-4514-2001-1-3-407-419
(Mi mmj28)
 

Steady solutions for FIFO networks

K. M. Khaninabcd, D. V. Khmelevedc, A. N. Rybkof, A. A. Vladimirovf

a Basic Research Institute in the Mathematical Sciences
b L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
c Heriot Watt University
d Isaac Newton Institute for Mathematical Sciences
e M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
f Institute for Information Transmission Problems, Russian Academy of Sciences
References:
Abstract: We consider the fluid model of a reentrant line with FIFO discipline and look for solutions with constant flows (steady solutions). In the case of constant viscosities we prove the uniqueness of such a solution. If viscosities are different, we present an example with multiple steady solutions. We also prove that for some classes of reentrant lines uniqueness holds even if the viscosities are different.
Key words and phrases: Kelly networks, fluid models, uniqueness of steady solution, fixed points.
Received: July 31, 2001; in revised form September 11, 2001
Bibliographic databases:
MSC: 90B10, 94C99, 37Lxx
Language: English
Citation: K. M. Khanin, D. V. Khmelev, A. N. Rybko, A. A. Vladimirov, “Steady solutions for FIFO networks”, Mosc. Math. J., 1:3 (2001), 407–419
Citation in format AMSBIB
\Bibitem{KhaKhmRyb01}
\by K.~M.~Khanin, D.~V.~Khmelev, A.~N.~Rybko, A.~A.~Vladimirov
\paper Steady solutions for FIFO networks
\jour Mosc. Math.~J.
\yr 2001
\vol 1
\issue 3
\pages 407--419
\mathnet{http://mi.mathnet.ru/mmj28}
\crossref{https://doi.org/10.17323/1609-4514-2001-1-3-407-419}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1877601}
\zmath{https://zbmath.org/?q=an:1030.90008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208587500007}
Linking options:
  • https://www.mathnet.ru/eng/mmj28
  • https://www.mathnet.ru/eng/mmj/v1/i3/p407
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:310
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024