Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2007, Volume 7, Number 2, Pages 195–207
DOI: https://doi.org/10.17323/1609-4514-2007-7-2-195-207
(Mi mmj278)
 

This article is cited in 37 scientific papers (total in 37 papers)

Multiples of lattice polytopes without interior lattice points

V. Batyreva, B. Nillb

a Eberhard Karls Universität Tübingen
b Freie Universität Berlin, Institut für Mathematik
Full-text PDF Citations (37)
References:
Abstract: Let $\Delta$ be an $n$-dimensional lattice polytope. The smallest non-negative integer $i$ such that $k\Delta$ contains no interior lattice points for $1\le k\le n-i$ we call the degree of $\Delta$. We consider lattice polytopes of fixed degree d and arbitrary dimension $n$. Our main result is a complete classification of $n$-dimensional lattice polytopes of degree $d=1$. This is a generalization of the classification of lattice polygons $(n=2)$ without interior lattice points due to Arkinstall, Khovanskii, Koelman and Schicho. Our classification shows that the secondary polytope ${\rm Sec}(\Delta)$ of a lattice polytope of degree 1 is always a simple polytope.
Key words and phrases: Lattice polytope, principal $A$-determinant.
Received: May 29, 2006
Bibliographic databases:
MSC: Primary 52B20; Secondary 14M25
Language: English
Citation: V. Batyrev, B. Nill, “Multiples of lattice polytopes without interior lattice points”, Mosc. Math. J., 7:2 (2007), 195–207
Citation in format AMSBIB
\Bibitem{BatNil07}
\by V.~Batyrev, B.~Nill
\paper Multiples of lattice polytopes without interior lattice points
\jour Mosc. Math.~J.
\yr 2007
\vol 7
\issue 2
\pages 195--207
\mathnet{http://mi.mathnet.ru/mmj278}
\crossref{https://doi.org/10.17323/1609-4514-2007-7-2-195-207}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2337878}
\zmath{https://zbmath.org/?q=an:1134.52020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261829300003}
Linking options:
  • https://www.mathnet.ru/eng/mmj278
  • https://www.mathnet.ru/eng/mmj/v7/i2/p195
  • This publication is cited in the following 37 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:470
    References:87
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024