Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2007, Volume 7, Number 1, Pages 67–84
DOI: https://doi.org/10.17323/1609-4514-2007-7-1-67-84
(Mi mmj271)
 

This article is cited in 13 scientific papers (total in 13 papers)

Converse spectral problems for nodal domains

B. Helffera, T. Hoffmann-Ostenhofb

a Paris-Sud University 11
b International Erwin Schrödinger Institute for Mathematical Physics
Full-text PDF Citations (13)
References:
Abstract: We consider two-dimensional Schrödinger operators in bounded domains. Abstractions of nodal sets are introduced and spectral conditions for them ensuring that they are actually zero sets of eigenfunctions are given. This is illustrated by an application to optimal partitions.
Key words and phrases: Schödinger operator, Nodal domain, Spectral theory.
Received: April 19, 2006
Bibliographic databases:
MSC: 35B05
Language: English
Citation: B. Helffer, T. Hoffmann-Ostenhof, “Converse spectral problems for nodal domains”, Mosc. Math. J., 7:1 (2007), 67–84
Citation in format AMSBIB
\Bibitem{HelHof07}
\by B.~Helffer, T.~Hoffmann-Ostenhof
\paper Converse spectral problems for nodal domains
\jour Mosc. Math.~J.
\yr 2007
\vol 7
\issue 1
\pages 67--84
\mathnet{http://mi.mathnet.ru/mmj271}
\crossref{https://doi.org/10.17323/1609-4514-2007-7-1-67-84}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2324557}
\zmath{https://zbmath.org/?q=an:1125.35068}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261708300004}
Linking options:
  • https://www.mathnet.ru/eng/mmj271
  • https://www.mathnet.ru/eng/mmj/v7/i1/p67
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:313
    References:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024