Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2007, Volume 7, Number 1, Pages 21–54
DOI: https://doi.org/10.17323/1609-4514-2007-7-1-21-54
(Mi mmj269)
 

This article is cited in 26 scientific papers (total in 26 papers)

Complex codimension one singular foliations and Godbillon–Vey sequences

D. Cerveaua, A. Lins-Netob, F. Loraya, J. V. Pereirab, F. Touzeta

a Institute of Mathematical Research of Rennes
b Instituto Nacional de Matemática Pura e Aplicada
Full-text PDF Citations (26)
References:
Abstract: Let $\mathcal F$ be a codimension one singular holomorphic foliation on a compact complex manifold $M$. Assume that there exists a meromorphic vector field $X$ on $M$ generically transversal to $\mathcal F$. Then, we prove that $\mathcal F$ is the meromorphic pull-back of an algebraic foliation on an algebraic manifold $N$, or $\mathcal F$ is transversely projective (in the sense of [19]), improving our previous work [7].
Such a vector field insures the existence of a global meromorphic Godbillon–Vey sequence for the foliation $\mathcal F$. We derive sufficient conditions on this sequence insuring such alternative. For instance, if there exists a finite Godbillon–Vey sequence or if the Godbillon–Vey 3-form $\omega_0\land\omega_1\land\omega_2$ is zero, then $\mathcal F$ is the pull-back of a foliation on a surface, or $\mathcal F$ is transversely projective (in the sense of [19]). We illustrate these results with many examples.
Key words and phrases: Holomorphic foliations, algebraic reduction, transversal structure.
Received: January 1, 2006
Bibliographic databases:
MSC: 37F75
Language: English
Citation: D. Cerveau, A. Lins-Neto, F. Loray, J. V. Pereira, F. Touzet, “Complex codimension one singular foliations and Godbillon–Vey sequences”, Mosc. Math. J., 7:1 (2007), 21–54
Citation in format AMSBIB
\Bibitem{CerLinLor07}
\by D.~Cerveau, A.~Lins-Neto, F.~Loray, J.~V.~Pereira, F.~Touzet
\paper Complex codimension one singular foliations and Godbillon--Vey sequences
\jour Mosc. Math.~J.
\yr 2007
\vol 7
\issue 1
\pages 21--54
\mathnet{http://mi.mathnet.ru/mmj269}
\crossref{https://doi.org/10.17323/1609-4514-2007-7-1-21-54}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2324555}
\zmath{https://zbmath.org/?q=an:1135.37019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261708300002}
Linking options:
  • https://www.mathnet.ru/eng/mmj269
  • https://www.mathnet.ru/eng/mmj/v7/i1/p21
  • This publication is cited in the following 26 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:383
    References:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024