Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2007, Volume 7, Number 1, Pages 1–20
DOI: https://doi.org/10.17323/1609-4514-2007-7-1-1-20
(Mi mmj268)
 

This article is cited in 5 scientific papers (total in 5 papers)

A counterexample to a multidimensional version of the weakened Hilbert's 16th problem

M. Bobieński, H. Żołądek

Institute of Mathematics, Warsaw University
Full-text PDF Citations (5)
References:
Abstract: In the weakened 16th Hilbert's Problem one asks for a bound on the number of limit cycles which appear after a polynomial perturbation of a planar polynomial Hamiltonian vector field. It is known that this number is finite for an individual vector field. In the multidimensional generalization of this problem one considers polynomial perturbation of a polynomial vector field with an invariant plane supporting a Hamiltonian dynamics. We present an explicit example of such perturbation with an infinite number of limit cycles which accumulate at some separatrix loop.
Key words and phrases: Polynomial vector field, limit cycle, invariant manifold, Abelian integral.
Received: January 19, 2006; in revised form June 7, 2006
Bibliographic databases:
MSC: 34C07, 34C08
Language: English
Citation: M. Bobieński, H. Żołądek, “A counterexample to a multidimensional version of the weakened Hilbert's 16th problem”, Mosc. Math. J., 7:1 (2007), 1–20
Citation in format AMSBIB
\Bibitem{Bobij}
\by M.~Bobie{\'n}ski, H.~{\.Z}o\l {\k a}dek
\paper A counterexample to a~multidimensional version of the weakened Hilbert's 16th problem
\jour Mosc. Math.~J.
\yr 2007
\vol 7
\issue 1
\pages 1--20
\mathnet{http://mi.mathnet.ru/mmj268}
\crossref{https://doi.org/10.17323/1609-4514-2007-7-1-1-20}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2324554}
\zmath{https://zbmath.org/?q=an:05202833}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000261708300001}
Linking options:
  • https://www.mathnet.ru/eng/mmj268
  • https://www.mathnet.ru/eng/mmj/v7/i1/p1
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:290
    Full-text PDF :2
    References:75
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024