Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2006, Volume 6, Number 4, Pages 657–672
DOI: https://doi.org/10.17323/1609-4514-2006-6-4-657-672
(Mi mmj264)
 

This article is cited in 6 scientific papers (total in 6 papers)

On the ergodicity of cylindrical transformations given by the logarithm

B. R. Fayada, M. Lemańczyb

a Université Paris 13
b Nikolaus Copernicus University
Full-text PDF Citations (6)
References:
Abstract: Given $\alpha\in[0,1]$ and $\varphi\colon\mathbb T\to\mathbb R$ measurable, the cylindrical cascade $S_{\alpha\varphi}$ is the map from $\mathbb T\times\mathbb R$ to itself given by $S_{\alpha\varphi}(x,y)=(x+\alpha, y+\varphi(x))$, which naturally appears in the study of some ordinary differential equations on $\mathbb R^3$. In this paper, we prove that for a set of full Lebesgue measure of $\alpha\in[0,1]$ the cylindrical cascades $S_{\alpha\varphi}$ are ergodic for every smooth function $\varphi$ with a logarithmic singularity, provided that the average of $\varphi$ vanishes.
Closely related to $S_{\alpha\varphi}$ are the special flows constructed above $R_\alpha$ and under $\varphi+c$, where $c\in\mathbb R$ is such that $\varphi+c>0$. In the case of a function $\varphi$ with an asymmetric logarithmic singularity, our result gives the first examples of ergodic cascades $S_{\alpha\varphi}$ with the corresponding special flows being mixing. Indeed, if the latter flows are mixing, then the usual techniques used to prove the essential value criterion for $S_{\alpha\varphi}$, which is equivalent to ergodicity, fail, and we devise a new method to prove this criterion, which we hope could be useful in tackling other problems of ergodicity for cocycles preserving an infinite measure.
Key words and phrases: Cylindrical cascade, essential value, logarithmic and phrases.
Received: February 1, 2005
Bibliographic databases:
MSC: 37C40, 37A20, 37C10
Language: English
Citation: B. R. Fayad, M. Lemańczy, “On the ergodicity of cylindrical transformations given by the logarithm”, Mosc. Math. J., 6:4 (2006), 657–672
Citation in format AMSBIB
\Bibitem{FayLem06}
\by B.~R.~Fayad, M.~Lema{\'n}czy
\paper On the ergodicity of cylindrical transformations given by the logarithm
\jour Mosc. Math.~J.
\yr 2006
\vol 6
\issue 4
\pages 657--672
\mathnet{http://mi.mathnet.ru/mmj264}
\crossref{https://doi.org/10.17323/1609-4514-2006-6-4-657-672}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2291157}
\zmath{https://zbmath.org/?q=an:1130.37341}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208596000003}
Linking options:
  • https://www.mathnet.ru/eng/mmj264
  • https://www.mathnet.ru/eng/mmj/v6/i4/p657
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:235
    References:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024