Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2006, Volume 6, Number 4, Pages 629–655
DOI: https://doi.org/10.17323/1609-4514-2006-6-4-629-655
(Mi mmj263)
 

This article is cited in 22 scientific papers (total in 22 papers)

Meixner polynomials and random partitions

Alexei Borodina, Grigori Olshanskiib

a Mathematics, Caltech, Pasadena, CA, U.S.A.
b Dobrushin Mathematics Laboratory, Institute for Information Transmission Problems, Moscow, RUSSIA
Full-text PDF Citations (22)
References:
Abstract: The paper deals with a 3-parameter family of probability measures on the set of partitions, called the z-measures. The z-measures first emerged in connection with the problem of harmonic analysis on the infinite symmetric group. They are a special and distinguished case of Okounkov's Schur measures. It is known that any Schur measure determines a determinantal point process on the 1-dimensional lattice. In the particular case of z-measures, the correlation kernel of this process, called the discrete hypergeometric kernel, has especially nice properties. The aim of the paper is to derive the discrete hypergeometric kernel by a new method, based on a relationship between the z-measures and the Meixner orthogonal polynomial ensemble. In another paper (Prob. Theory Rel. Fields 135 (2006), 84–152) we apply the same approach to a dynamical model related to the z-measures.
Key words and phrases: Random partitions, random Young diagrams, determinantal point processes, correlation functions, correlation kernels, orthogonal polynomial ensembles, Meixner polynomials, Krawtchouk polynomials.
Received: June 16, 2006
Bibliographic databases:
MSC: 60C05, 33C45
Language: English
Citation: Alexei Borodin, Grigori Olshanskii, “Meixner polynomials and random partitions”, Mosc. Math. J., 6:4 (2006), 629–655
Citation in format AMSBIB
\Bibitem{BorOls06}
\by Alexei~Borodin, Grigori~Olshanskii
\paper Meixner polynomials and random partitions
\jour Mosc. Math.~J.
\yr 2006
\vol 6
\issue 4
\pages 629--655
\mathnet{http://mi.mathnet.ru/mmj263}
\crossref{https://doi.org/10.17323/1609-4514-2006-6-4-629-655}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2291156}
\zmath{https://zbmath.org/?q=an:1126.60006}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208596000002}
Linking options:
  • https://www.mathnet.ru/eng/mmj263
  • https://www.mathnet.ru/eng/mmj/v6/i4/p629
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:556
    References:114
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024