|
This article is cited in 11 scientific papers (total in 11 papers)
Yangians and Mickelsson algebras. II
S. M. Khoroshkina, M. L. Nazarovb a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
b University of York
Abstract:
We study the composition of two functors. The first functor, acting from the category of modules over the Lie algebra $\mathfrak{gl}_m$ to the category of modules over the degenerate affine Hecke algebra of $GL_N$, was introduced by Cherednik. The second functor is a skew version of the functor, due to Drinfeld, from the latter category to the category of modules over the Yangian $Y(\mathfrak{gl}_m)$. We give a representation-theoretic explanation of a link between intertwining operators on tensor products of $Y(\mathfrak{gl}_m)$-modules and the “extremal cocycle” introduced by Zhelobenko on the Weyl group of $\mathfrak{gl}_m$ We also establish a connection between the composition of two functors and Olshanski's “centralizer construction” of the Yangian $Y(\mathfrak{gl}_m)$.
Key words and phrases:
Cherednik functor, Drinfeld functor, Zhelobenko cocycle.
Received: August 11, 2006
Citation:
S. M. Khoroshkin, M. L. Nazarov, “Yangians and Mickelsson algebras. II”, Mosc. Math. J., 6:3 (2006), 477–504
Linking options:
https://www.mathnet.ru/eng/mmj257 https://www.mathnet.ru/eng/mmj/v6/i3/p477
|
Statistics & downloads: |
Abstract page: | 325 | References: | 62 |
|