Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2006, Volume 6, Number 3, Pages 461–475
DOI: https://doi.org/10.17323/1609-4514-2006-6-3-461-475
(Mi mmj256)
 

This article is cited in 15 scientific papers (total in 15 papers)

The boundary of the Eulerian number triangle

A. V. Gnedina, G. I. Olshanskiib

a Utrecht University
b Institute for Information Transmission Problems, Russian Academy of Sciences
Full-text PDF Citations (15)
References:
Abstract: The Eulerian triangle is a classical array of combinatorial numbers defined by a linear recursion. The associated boundary problem asks one to find all extreme nonnegative solutions to a dual recursion. Exploiting connections with random permutations and Markov chains we show that the boundary is discrete and explicitly identify its elements.
Key words and phrases: Eulerian numbers, extreme boundary, descents.
Received: March 6, 2006
Bibliographic databases:
MSC: 60J50, 60C05
Language: English
Citation: A. V. Gnedin, G. I. Olshanskii, “The boundary of the Eulerian number triangle”, Mosc. Math. J., 6:3 (2006), 461–475
Citation in format AMSBIB
\Bibitem{GneOls06}
\by A.~V.~Gnedin, G.~I.~Olshanskii
\paper The boundary of the Eulerian number triangle
\jour Mosc. Math.~J.
\yr 2006
\vol 6
\issue 3
\pages 461--475
\mathnet{http://mi.mathnet.ru/mmj256}
\crossref{https://doi.org/10.17323/1609-4514-2006-6-3-461-475}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2274860}
\zmath{https://zbmath.org/?q=an:1126.60065}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595900004}
Linking options:
  • https://www.mathnet.ru/eng/mmj256
  • https://www.mathnet.ru/eng/mmj/v6/i3/p461
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:369
    References:75
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024