Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2006, Volume 6, Number 2, Pages 389–404
DOI: https://doi.org/10.17323/1609-4514-2006-6-2-389-404
(Mi mmj252)
 

This article is cited in 2 scientific papers (total in 2 papers)

Equivariant symplectic geometry of cotangent bundles. II

D. A. Timashev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF Citations (2)
References:
Abstract: We examine the structure of the cotangent bundle $T^*X$ of an algebraic variety X acted on by a reductive group $G$ from the viewpoint of equivariant symplectic geometry. In particular, we construct an equivariant symplectic covering of $T^*X$ by the cotangent bundle of a certain variety of horospheres in $X$, and integrate the invariant collective motion on $T^*X$. These results are based on a “local structure theorem” describing the action of a certain parabolic in $G$ on an open subset of $X$, which is interesting by itself.
Key words and phrases: Cotangent bundle, moment map, horosphere, symplectic covering, cross-section, invariant collective motion, flat.
Received: March 3, 2005
Bibliographic databases:
MSC: Primary 14L30; Secondary 53D05, 53D20
Language: English
Citation: D. A. Timashev, “Equivariant symplectic geometry of cotangent bundles. II”, Mosc. Math. J., 6:2 (2006), 389–404
Citation in format AMSBIB
\Bibitem{Tim06}
\by D.~A.~Timashev
\paper Equivariant symplectic geometry of cotangent bundles.~II
\jour Mosc. Math.~J.
\yr 2006
\vol 6
\issue 2
\pages 389--404
\mathnet{http://mi.mathnet.ru/mmj252}
\crossref{https://doi.org/10.17323/1609-4514-2006-6-2-389-404}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2270620}
\zmath{https://zbmath.org/?q=an:1124.14045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595800008}
Linking options:
  • https://www.mathnet.ru/eng/mmj252
  • https://www.mathnet.ru/eng/mmj/v6/i2/p389
    Cycle of papers
    This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:312
    References:67
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024