Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2006, Volume 6, Number 2, Pages 359–388
DOI: https://doi.org/10.17323/1609-4514-2006-6-2-359-388
(Mi mmj251)
 

This article is cited in 9 scientific papers (total in 9 papers)

An introduction to Conway's games and numbers

D. Schleicher, M. Stoll

International University Bremen
Full-text PDF Citations (9)
References:
Abstract: This note attempts to furnish John H. Conway's combinatorial game theory with an introduction that is easily accessible and yet mathematically precise and self-contained and which provides complete statements and proofs for some of the folklore in the subject.
Conway's theory is a fascinating and rich theory based on a simple and intuitive recursive definition of games, which yields a very rich algebraic structure. Games form an abelian GROUP in a very natural way. A certain subgroup of games, called numbers, is a FIELD that contains both the real numbers and the ordinal numbers. Conway's theory is deeply satisfying from a theoretical point of view, and at the same time it has useful applications to specific games such as Go.
Key words and phrases: Conway game, surreal number, combinatorial game theory.
Received: November 14, 2004
Bibliographic databases:
Language: English
Citation: D. Schleicher, M. Stoll, “An introduction to Conway's games and numbers”, Mosc. Math. J., 6:2 (2006), 359–388
Citation in format AMSBIB
\Bibitem{SchSto06}
\by D.~Schleicher, M.~Stoll
\paper An introduction to Conway's games and numbers
\jour Mosc. Math.~J.
\yr 2006
\vol 6
\issue 2
\pages 359--388
\mathnet{http://mi.mathnet.ru/mmj251}
\crossref{https://doi.org/10.17323/1609-4514-2006-6-2-359-388}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2270619}
\zmath{https://zbmath.org/?q=an:05182601}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595800007}
Linking options:
  • https://www.mathnet.ru/eng/mmj251
  • https://www.mathnet.ru/eng/mmj/v6/i2/p359
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:502
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024