Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2006, Volume 6, Number 2, Pages 299–305
DOI: https://doi.org/10.17323/1609-4514-2006-6-2-299-305
(Mi mmj247)
 

This article is cited in 10 scientific papers (total in 10 papers)

The horospherical Cauchy–Radon transform on compact symmetric spaces

S. G. Gindikin

Rutgers, The State University of New Jersey, Department of Mathematics
Full-text PDF Citations (10)
References:
Abstract: Harmonic analysis on noncompact Riemannian symmetric spaces is in a sense equivalent to the theory of the horospherical transform. There are no horospheres on compact symmetric spaces, but we define a complex version of the horospherical transform, which plays a similar role for harmonic analysis on them.
Key words and phrases: Symmetric space, horospherical transform, spherical Fourier transform, Cauchy–Radon transform, inversion formula, Plancherel formula.
Received: September 6, 2005
Bibliographic databases:
MSC: 14M17, 22E46, 44A15
Language: English
Citation: S. G. Gindikin, “The horospherical Cauchy–Radon transform on compact symmetric spaces”, Mosc. Math. J., 6:2 (2006), 299–305
Citation in format AMSBIB
\Bibitem{Gin06}
\by S.~G.~Gindikin
\paper The horospherical Cauchy--Radon transform on compact symmetric spaces
\jour Mosc. Math.~J.
\yr 2006
\vol 6
\issue 2
\pages 299--305
\mathnet{http://mi.mathnet.ru/mmj247}
\crossref{https://doi.org/10.17323/1609-4514-2006-6-2-299-305}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2270615}
\zmath{https://zbmath.org/?q=an:1116.43001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595800003}
Linking options:
  • https://www.mathnet.ru/eng/mmj247
  • https://www.mathnet.ru/eng/mmj/v6/i2/p299
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:275
    References:84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024