Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2006, Volume 6, Number 2, Pages 265–297
DOI: https://doi.org/10.17323/1609-4514-2006-6-2-265-297
(Mi mmj246)
 

This article is cited in 28 scientific papers (total in 28 papers)

Existence of periodic orbits for singular-hyperbolic sets

S. Bautistaa, C. A. Moralesb

a Universidad Nacional de Colombia
b Instituto de Matemática, Universidade Federal do Rio de Janeiro
Full-text PDF Citations (28)
References:
Abstract: It is well known that on every compact 3-manifold there is a $C^1$ flow displaying a singular-hyperbolic isolated set which has no periodic orbits. By contrast, in this paper we prove that every singular-hyperbolic attracting set of a $C^1$ flow on a compact 3-manifold has a periodic orbit.
Key words and phrases: Singular-hyperbolic set, attracting set, periodic orbit.
Received: March 18, 2005; in revised form January 9, 2006
Bibliographic databases:
MSC: Primary 37D30; Secondary 37D45
Language: English
Citation: S. Bautista, C. A. Morales, “Existence of periodic orbits for singular-hyperbolic sets”, Mosc. Math. J., 6:2 (2006), 265–297
Citation in format AMSBIB
\Bibitem{BauMor06}
\by S.~Bautista, C.~A.~Morales
\paper Existence of periodic orbits for singular-hyperbolic sets
\jour Mosc. Math.~J.
\yr 2006
\vol 6
\issue 2
\pages 265--297
\mathnet{http://mi.mathnet.ru/mmj246}
\crossref{https://doi.org/10.17323/1609-4514-2006-6-2-265-297}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2270614}
\zmath{https://zbmath.org/?q=an:1124.37021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595800002}
Linking options:
  • https://www.mathnet.ru/eng/mmj246
  • https://www.mathnet.ru/eng/mmj/v6/i2/p265
  • This publication is cited in the following 28 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024