Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2006, Volume 6, Number 1, Pages 169–194
DOI: https://doi.org/10.17323/1609-4514-2006-6-1-169-194
(Mi mmj242)
 

This article is cited in 4 scientific papers (total in 4 papers)

What is one-term relation for higher homology of long knots

V. É. Turchinab

a Independent University of Moscow
b Université catholique de Louvain
Full-text PDF Citations (4)
References:
Abstract: Vassiliev's spectral sequence for long knots is discussed. Briefly speaking we study what happens if the strata of non-immersions are ignored.
Various algebraic structures on the spectral sequence are introduced. General theorems about these structures imply, for example, that the bialgebra of chord diagrams is polynomial for any field of coefficients.
Key words and phrases: Knot spaces, discriminant, bialgebra of chord diagrams, sphere, Hopf algebra with divided powers, simplicial algebra.
Received: November 14, 2005
Bibliographic databases:
MSC: Primary 57Q45; Secondary 57Q35
Language: English
Citation: V. É. Turchin, “What is one-term relation for higher homology of long knots”, Mosc. Math. J., 6:1 (2006), 169–194
Citation in format AMSBIB
\Bibitem{Tur06}
\by V.~\'E.~Turchin
\paper What is one-term relation for higher homology of long knots
\jour Mosc. Math.~J.
\yr 2006
\vol 6
\issue 1
\pages 169--194
\mathnet{http://mi.mathnet.ru/mmj242}
\crossref{https://doi.org/10.17323/1609-4514-2006-6-1-169-194}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2265954}
\zmath{https://zbmath.org/?q=an:1132.57022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595700011}
Linking options:
  • https://www.mathnet.ru/eng/mmj242
  • https://www.mathnet.ru/eng/mmj/v6/i1/p169
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:206
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024