Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2006, Volume 6, Number 1, Pages 135–152
DOI: https://doi.org/10.17323/1609-4514-2006-6-1-135-152
(Mi mmj240)
 

This article is cited in 1 scientific paper (total in 1 paper)

On affine hypersurfaces with everywhere nondegenerate second quadratic form

A. G. Khovanskiia, D. Novikovb

a University of Toronto
b Weizmann Institute of Science
Full-text PDF Citations (1)
References:
Abstract: An Arnold conjecture claims that a real projective hypersurface with second quadratic form of constant signature $(k,l)$ should separate two projective subspaces of dimension $k$ and $l$ correspondingly. We consider affine versions of the conjecture dealing with hypersurfaces approaching at infinity two shifted halves of a standard cone. We prove that if the halves intersect, then the hypersurface does separate two affine subspaces. In the case of non-intersecting half-cones we construct an example of a surface of negative curvature in $\mathbb R^3$ bounding a domain without a line inside.
Key words and phrases: Arnold conjecture, ($k$, $l$)-hyperbolic hypersurface, convex-concave set.
Received: January 26, 2005
Bibliographic databases:
MSC: 52A30, 53A15
Language: English
Citation: A. G. Khovanskii, D. Novikov, “On affine hypersurfaces with everywhere nondegenerate second quadratic form”, Mosc. Math. J., 6:1 (2006), 135–152
Citation in format AMSBIB
\Bibitem{KhoNov06}
\by A.~G.~Khovanskii, D.~Novikov
\paper On affine hypersurfaces with everywhere nondegenerate second quadratic form
\jour Mosc. Math.~J.
\yr 2006
\vol 6
\issue 1
\pages 135--152
\mathnet{http://mi.mathnet.ru/mmj240}
\crossref{https://doi.org/10.17323/1609-4514-2006-6-1-135-152}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2265952}
\zmath{https://zbmath.org/?q=an:1132.52010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595700009}
Linking options:
  • https://www.mathnet.ru/eng/mmj240
  • https://www.mathnet.ru/eng/mmj/v6/i1/p135
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:310
    Full-text PDF :1
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024