Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2006, Volume 6, Number 1, Pages 119–134
DOI: https://doi.org/10.17323/1609-4514-2006-6-1-119-134
(Mi mmj239)
 

This article is cited in 20 scientific papers (total in 20 papers)

Category of $\mathfrak{sp}(2n)$-modules with bounded weight multiplicities

D. Grantcharova, V. V. Serganovab

a Department of Computer Science San Jose State University
b University of California, Berkeley
Full-text PDF Citations (20)
References:
Abstract: Let $\mathfrak g$ be a finite dimensional simple Lie algebra. Denote by $\mathcal B$ the category of all bounded weight $\mathfrak g$-modules, i.e. those which are direct sum of their weight spaces and have uniformly bounded weight multiplicities. A result of Fernando shows that infinite-dimensional bounded weight modules exist only for $\mathfrak g=\mathfrak{sl}(n)$ and $\mathfrak g=\mathfrak{sp}(2n)$. If $\mathfrak g =\mathfrak{sp}(2n)$ we show that $\mathcal B$ has enough projectives if and only if $n>1$. In addition, the indecomposable projective modules can be parameterized and described explicitly. All indecomposable objects are described in terms of indecomposable representations of a certain quiver with relations. This quiver is wild for $n>2$. For $n=2$ we describe all indecomposables by relating the blocks of $\mathcal B$ to the representations of the affine quiver $A_3^{(1)}$.
Key words and phrases: Lie algebra, indecomposable representations, quiver, weight modules.
Received: December 1, 2005
Bibliographic databases:
MSC: 17B10
Language: English
Citation: D. Grantcharov, V. V. Serganova, “Category of $\mathfrak{sp}(2n)$-modules with bounded weight multiplicities”, Mosc. Math. J., 6:1 (2006), 119–134
Citation in format AMSBIB
\Bibitem{GraSer06}
\by D.~Grantcharov, V.~V.~Serganova
\paper Category of $\mathfrak{sp}(2n)$-modules with bounded weight multiplicities
\jour Mosc. Math.~J.
\yr 2006
\vol 6
\issue 1
\pages 119--134
\mathnet{http://mi.mathnet.ru/mmj239}
\crossref{https://doi.org/10.17323/1609-4514-2006-6-1-119-134}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2265951}
\zmath{https://zbmath.org/?q=an:1127.17006}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595700008}
Linking options:
  • https://www.mathnet.ru/eng/mmj239
  • https://www.mathnet.ru/eng/mmj/v6/i1/p119
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024