Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2006, Volume 6, Number 1, Pages 107–117
DOI: https://doi.org/10.17323/1609-4514-2006-6-1-107-117
(Mi mmj238)
 

This article is cited in 2 scientific papers (total in 2 papers)

Logarithmic vector fields for the discriminants of composite functions

V. V. Goryunov

Department of Mathematical Sciences, University of Liverpool
Full-text PDF Citations (2)
References:
Abstract: The $K_f$-equivalence is a natural equivalence between map-germs $\varphi\mathbb C^m\mathbb C^n$ which ensures that their compositions $f\circ\varphi$ with a fixed function-germ f on $\mathbb C^n$ are the same up to biholomorphisms of $\mathbb C^m$. We show that the discriminant $\sum$ in the base of a $K_f$-versal deformation of a germ $\varphi$ is Saito's free divisor provided the critical locus of f is Cohen–Macaulay of codimension $m+1$ and all the transversal types of $f$ are $A_k$ singularities. We give an algorithm to construct basic vector fields tangent to $\sum$. This is a generalisation of classical Zakalyukin's algorithm to write out basic fields tangent to the discriminant of an isolated function singularity. The case of symmetric matrix families in two variables is done in detail. For simple singularities, it is directly related to Arnold's convolution of invariants of Weyl groups.
Key words and phrases: Logarithmic vector field, discriminant, composite function, free divisor, matrix singularities.
Received: February 6, 2006
Bibliographic databases:
MSC: Primary 32S05; Secondary 58K20
Language: English
Citation: V. V. Goryunov, “Logarithmic vector fields for the discriminants of composite functions”, Mosc. Math. J., 6:1 (2006), 107–117
Citation in format AMSBIB
\Bibitem{Gor06}
\by V.~V.~Goryunov
\paper Logarithmic vector fields for the discriminants of composite functions
\jour Mosc. Math.~J.
\yr 2006
\vol 6
\issue 1
\pages 107--117
\mathnet{http://mi.mathnet.ru/mmj238}
\crossref{https://doi.org/10.17323/1609-4514-2006-6-1-107-117}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2265950}
\zmath{https://zbmath.org/?q=an:1121.58028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595700007}
Linking options:
  • https://www.mathnet.ru/eng/mmj238
  • https://www.mathnet.ru/eng/mmj/v6/i1/p107
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:272
    References:81
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024