Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2006, Volume 6, Number 1, Pages 95–106
DOI: https://doi.org/10.17323/1609-4514-2006-6-1-95-106
(Mi mmj237)
 

This article is cited in 3 scientific papers (total in 3 papers)

First steps towards total reality of meromorphic functions

T. Ekedahla, B. Z. Shapiroa, M. Z. Shapirob

a Stockholm University
b Michigan State University
Full-text PDF Citations (3)
References:
Abstract: It was earlier conjectured by the second and the third authors that any rational curve $\gamma\colon\mathbb{CP}^1\to\mathbb{CP}^n$ such that the inverse images of all its flattening points lie on the real line $\mathbb{RP}^1\subset\mathbb{CP}^1$ is real algebraic up to a Möbius transformation of the image $\mathbb C\mathbb P^n$. (By a flattening point $p$ on $\gamma$ we mean a point at which the Frenet $n$-frame $(\gamma',\gamma'',\dots,\gamma^{(n)})$ is degenerate.) Below we extend this conjecture to the case of meromorphic functions on real algebraic curves of higher genera and settle it for meromorphic functions of degrees 2, 3 and several other cases.
Key words and phrases: Total reality, meromorphic functions, flattening points.
Received: December 1, 2005
Bibliographic databases:
MSC: 14P05, 14P25
Language: English
Citation: T. Ekedahl, B. Z. Shapiro, M. Z. Shapiro, “First steps towards total reality of meromorphic functions”, Mosc. Math. J., 6:1 (2006), 95–106
Citation in format AMSBIB
\Bibitem{EkeShaSha06}
\by T.~Ekedahl, B.~Z.~Shapiro, M.~Z.~Shapiro
\paper First steps towards total reality of meromorphic functions
\jour Mosc. Math.~J.
\yr 2006
\vol 6
\issue 1
\pages 95--106
\mathnet{http://mi.mathnet.ru/mmj237}
\crossref{https://doi.org/10.17323/1609-4514-2006-6-1-95-106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2265949}
\zmath{https://zbmath.org/?q=an:1126.14064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595700006}
Linking options:
  • https://www.mathnet.ru/eng/mmj237
  • https://www.mathnet.ru/eng/mmj/v6/i1/p95
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:227
    Full-text PDF :1
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024