Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2006, Volume 6, Number 1, Pages 43–56
DOI: https://doi.org/10.17323/1609-4514-2006-6-1-43-56
(Mi mmj234)
 

This article is cited in 2 scientific papers (total in 3 papers)

Statistics of Young diagrams of cycles of dynamical systems for finite tori automorphisms

V. I. Arnol'd

Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF Citations (3)
References:
Abstract: A permutation of a set of $N$ elements is decomposing this set into $y$ cycles of lengths $x_s$, defining a partition $N=x_1+\dots+x_y$. The length $X_1$, the height y and the fullness $\lambda=N/xy$ of the Young diagram $x_1\geq x_2\ge\dots\ge x_y$ behave for the large random permutation like $x\sim an$, $y\sim b\ln N$, $\lambda\sim c/\ln N$.
The finite 2-torus $M$ is the product $\mathbb Z_m\times\mathbb Z_m$, and its Fibonacci automorphism sends $(u,v)$ to $(2u+v,u+v)$ (mod $m$). This permutation of $N=m^2$ points of the finite torus $M$ defines a peculiar Young diagram, whose behavior (for large $m$) is very different from that of a random permutation of $N$ points.
Key words and phrases: Fibonacci numbers, permutations, symmetric group, projective line, chaos, cat mapping, modular group, randomness generating, Galois field, finite Lobachevsky plane, relativistic de Sitter world.
Received: April 22, 2006
Bibliographic databases:
Document Type: Article
MSC: 05E10
Language: English
Citation: V. I. Arnol'd, “Statistics of Young diagrams of cycles of dynamical systems for finite tori automorphisms”, Mosc. Math. J., 6:1 (2006), 43–56
Citation in format AMSBIB
\Bibitem{Arn06}
\by V.~I.~Arnol'd
\paper Statistics of Young diagrams of cycles of dynamical systems for finite tori automorphisms
\jour Mosc. Math.~J.
\yr 2006
\vol 6
\issue 1
\pages 43--56
\mathnet{http://mi.mathnet.ru/mmj234}
\crossref{https://doi.org/10.17323/1609-4514-2006-6-1-43-56}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2265946}
\zmath{https://zbmath.org/?q=an:1124.05096}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595700003}
Linking options:
  • https://www.mathnet.ru/eng/mmj234
  • https://www.mathnet.ru/eng/mmj/v6/i1/p43
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024