Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2005, Volume 5, Number 4, Pages 961–968
DOI: https://doi.org/10.17323/1609-4514-2005-5-4-961-968
(Mi mmj230)
 

This article is cited in 9 scientific papers (total in 9 papers)

The Brauer-Siegel and Tsfasman–Vlǎdut̨ theorems for almost normal extensions of number fields

A. I. Zykin

Independent University of Moscow
Full-text PDF Citations (9)
References:
Abstract: The classical Brauer–Siegel theorem states that if k runs through the sequence of normal extensions of $\mathbb Q$ such that $n_k/\log|D_k|\to 0$, then $\log h_k R_k/\log \sqrt{|D_k|}\to 1$. First, in this paper we obtain the generalization of the Brauer–Siegel and Tsfasman–Vlǎdut̨ theorems to the case of almost normal number fields. Second, using the approach of Hajir and Maire, we construct several new examples concerning the Brauer–Siegel ratio in asymptotically good towers of number fields. These examples give smaller values of the Brauer–Siegel ratio than those given by Tsfasman and Vlǎdut̨.
Key words and phrases: Global field, Brauer–Siegel theorem, asymptotically good tower, asymptotically bad tower.
Received: June 16, 2004
Bibliographic databases:
MSC: 11R29, 11R42
Language: English
Citation: A. I. Zykin, “The Brauer-Siegel and Tsfasman–Vlǎdut̨ theorems for almost normal extensions of number fields”, Mosc. Math. J., 5:4 (2005), 961–968
Citation in format AMSBIB
\Bibitem{Zyk05}
\by A.~I.~Zykin
\paper The Brauer-Siegel and Tsfasman--Vl\v adu\k t theorems for almost normal extensions of number fields
\jour Mosc. Math.~J.
\yr 2005
\vol 5
\issue 4
\pages 961--968
\mathnet{http://mi.mathnet.ru/mmj230}
\crossref{https://doi.org/10.17323/1609-4514-2005-5-4-961-968}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2267316}
\zmath{https://zbmath.org/?q=an:1125.11062}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595600013}
Linking options:
  • https://www.mathnet.ru/eng/mmj230
  • https://www.mathnet.ru/eng/mmj/v5/i4/p961
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024