Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2005, Volume 5, Number 4, Pages 927–959
DOI: https://doi.org/10.17323/1609-4514-2005-5-4-927-959
(Mi mmj229)
 

This article is cited in 13 scientific papers (total in 13 papers)

Poisson hypothesis for information networks. II

A. N. Rybkoa, S. B. Shlosmanb

a Institute for Information Transmission Problems, Russian Academy of Sciences
b CNRS – Center of Theoretical Physics
Full-text PDF Citations (13)
References:
Abstract: This is the second part of our paper. We study the Poisson Hypothesis, which is a device to analyze approximately the behavior of large queuing networks. We prove it in some simple limiting cases. We show in particular that the corresponding dynamical system, defined by the non-linear Markov process, has a line of fixed points which are global attractors. To do this we derive the corresponding non-linear equation and we explore its self-averaging properties. We also argue that in cases of heavy-tail service times the PH can be violated.
Key words and phrases: Mean-field models, server, waiting time, phase transition, limit theorem, self-averaging property, attractor.
Received: June 14, 2005
Bibliographic databases:
MSC: Primary 82C20; Secondary 60J25
Language: English
Citation: A. N. Rybko, S. B. Shlosman, “Poisson hypothesis for information networks. II”, Mosc. Math. J., 5:4 (2005), 927–959
Citation in format AMSBIB
\Bibitem{RybShl05}
\by A.~N.~Rybko, S.~B.~Shlosman
\paper Poisson hypothesis for information networks.~II
\jour Mosc. Math.~J.
\yr 2005
\vol 5
\issue 4
\pages 927--959
\mathnet{http://mi.mathnet.ru/mmj229}
\crossref{https://doi.org/10.17323/1609-4514-2005-5-4-927-959}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2267315}
\zmath{https://zbmath.org/?q=an:1126.60077}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595600012}
Linking options:
  • https://www.mathnet.ru/eng/mmj229
  • https://www.mathnet.ru/eng/mmj/v5/i4/p927
    Cycle of papers
    This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:338
    Full-text PDF :1
    References:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024