Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2005, Volume 5, Number 4, Pages 857–868
DOI: https://doi.org/10.17323/1609-4514-2005-5-4-857-868
(Mi mmj225)
 

This article is cited in 2 scientific papers (total in 2 papers)

The Klein quartic as a cyclic group gene

G. Lachaud

Institut de Mathématiques de Luminy
Full-text PDF Citations (2)
References:
Abstract: Let $k$ be a field, and let $a$$b$$c$ be three elements in $k^X$. The nonsingular projective plane curve $X$ defined over $k$ with equation
$$ ax^3y+by^3z+cz^3x=0 $$
has genus 3 and is reduced to the familiar Klein quartic when $a=b=c=1$. The Jacobian $J_X$ of $X$ is a three-dimensional abelian variety, defined over $k$ as well. The aim of this article is to give some formulas for the number of points of the group $J_X(k)$ of rational points of $J_X$ if $k=\mathbb F_q$ is a finite field.
We assume that the full group of seventh roots of unity is contained in $k$; this amounts to saying that $q\equiv 1$ (mod 7). If q is a prime number and the coefficients $a$$b$$c$ are appropriately chosen, we noticed that the number of points of the group $J_X(k)$ is prime in a significant number of occurences. This provides cyclic groups which seem to be accurate for cryptographic applications.
Key words and phrases: Jacobi sum, Faddeev curve, Klein quartic, curve over a finite field, Jacobian, zeta function.
Received: December 16, 2005
Bibliographic databases:
MSC: 11G25
Language: English
Citation: G. Lachaud, “The Klein quartic as a cyclic group gene”, Mosc. Math. J., 5:4 (2005), 857–868
Citation in format AMSBIB
\Bibitem{Lac05}
\by G.~Lachaud
\paper The Klein quartic as a~cyclic group gene
\jour Mosc. Math.~J.
\yr 2005
\vol 5
\issue 4
\pages 857--868
\mathnet{http://mi.mathnet.ru/mmj225}
\crossref{https://doi.org/10.17323/1609-4514-2005-5-4-857-868}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2266462}
\zmath{https://zbmath.org/?q=an:1131.11041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595600008}
Linking options:
  • https://www.mathnet.ru/eng/mmj225
  • https://www.mathnet.ru/eng/mmj/v5/i4/p857
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:231
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024