Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2005, Volume 5, Number 4, Pages 767–774
DOI: https://doi.org/10.17323/1609-4514-2005-5-4-767-774
(Mi mmj221)
 

This article is cited in 10 scientific papers (total in 10 papers)

Some Artin–Schreier towers are easy

A. Garciaa, H. Stichtenothbc

a Instituto Nacional de Matemática Pura e Aplicada
b University of Duisburg-Essen
c Sabanci University
Full-text PDF Citations (10)
References:
Abstract: Towers of function fields (resp., of algebraic curves) with positive limit provide examples of curves with large genus having many rational points over a finite field. It is in general a difficult task to calculate the genus of a wild tower. In this paper, we present a method for calculating the genus of certain Artin–Schreier towers. As an illustration of our method, we obtain a very simple and unified proof for the limits of some towers that attain the Drinfeld–Vlǎdut̨ bound or the Zink bound.
Key words and phrases: Tower of function fields, finite field, Artin–Schreier extension, genus, rational place, limit of towers.
Received: March 9, 2005
Bibliographic databases:
Language: English
Citation: A. Garcia, H. Stichtenoth, “Some Artin–Schreier towers are easy”, Mosc. Math. J., 5:4 (2005), 767–774
Citation in format AMSBIB
\Bibitem{GarSti05}
\by A.~Garcia, H.~Stichtenoth
\paper Some Artin--Schreier towers are easy
\jour Mosc. Math.~J.
\yr 2005
\vol 5
\issue 4
\pages 767--774
\mathnet{http://mi.mathnet.ru/mmj221}
\crossref{https://doi.org/10.17323/1609-4514-2005-5-4-767-774}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2266458}
\zmath{https://zbmath.org/?q=an:1124.11053}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595600004}
Linking options:
  • https://www.mathnet.ru/eng/mmj221
  • https://www.mathnet.ru/eng/mmj/v5/i4/p767
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:305
    References:76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024