Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2005, Volume 5, Number 3, Pages 721–737
DOI: https://doi.org/10.17323/1609-4514-2005-5-3-721-737
(Mi mmj217)
 

This article is cited in 1 scientific paper (total in 2 paper)

Towards the definition of metric hyperbolicity

A. M. Vershik

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF Citations (2)
References:
Abstract: We introduce measure-theoretic definitions of hyperbolic structure for measure-preserving automorphisms. A wide class of $K$-automorphisms possesses a hyperbolic structure; we prove that all $K$-automorphisms have a slightly weaker structure of semi-hyperbolicity. Instead of the notions of stable and unstable foliations and other notions from smooth theory, we use the tools of the theory of polymorphisms. The central role is played by polymorphisms associated with a special invariant equivalence relation, more exactly, with a homoclinic equivalence relation. We call an automorphism with given hyperbolic structure a hyperbolic automorphism and prove that it is canonically quasi-similar to a so-called prime nonmixing polymorphism. We present a short but necessary vocabulary of polymorphisms and Markov operators.
Key words and phrases: Polymorphisms, Markov operator, hyperbolic structure, quasisimilarity.
Received: July 4, 2005
Bibliographic databases:
MSC: Primary 37A05, 47A45, 60J27; Secondary 37A25, 37H10, 47A40
Language: English
Citation: A. M. Vershik, “Towards the definition of metric hyperbolicity”, Mosc. Math. J., 5:3 (2005), 721–737
Citation in format AMSBIB
\Bibitem{Ver05}
\by A.~M.~Vershik
\paper Towards the definition of metric hyperbolicity
\jour Mosc. Math.~J.
\yr 2005
\vol 5
\issue 3
\pages 721--737
\mathnet{http://mi.mathnet.ru/mmj217}
\crossref{https://doi.org/10.17323/1609-4514-2005-5-3-721-737}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2241819}
\zmath{https://zbmath.org/?q=an:1109.37002}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595500013}
Linking options:
  • https://www.mathnet.ru/eng/mmj217
  • https://www.mathnet.ru/eng/mmj/v5/i3/p721
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:316
    References:77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024