Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2005, Volume 5, Number 3, Pages 633–667
DOI: https://doi.org/10.17323/1609-4514-2005-5-3-633-667
(Mi mmj213)
 

This article is cited in 5 scientific papers (total in 5 papers)

Topology of generic Hamiltonian foliations on Riemann surfaces

S. P. Novikovab

a L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
b University of Maryland
Full-text PDF Citations (5)
References:
Abstract: The topology of generic Hamiltonian dynamical systems given by the real parts of generic holomorphic 1-forms on Riemann surfaces is studied. Our approach is based on the notion of transversal canonical basis of cycles. This approach allows us to present a convenient combinatorial model of the whole topology of the flow, especially effective for $g=2$. A maximal abelian covering over the Riemann surface is needed here. The complete combinatorial model of the flow is constructed. It consists of the plane diagram and $g$ straight-line flows in 2-tori “with obstacles.” The fundamental semigroup of positive closed paths transversal to the foliation is studied. This work contains an improved exposition of the results presented in the author's recent preprint and new results concerning the calculation of all transversal canonical bases of cycles in the 2-torus with obstacle in terms of continued fractions.
Key words and phrases: Hamiltonian system, Riemann surface, transversal semigroup.
Received: July 29, 2005
Bibliographic databases:
Document Type: Article
MSC: 37D40
Language: English
Citation: S. P. Novikov, “Topology of generic Hamiltonian foliations on Riemann surfaces”, Mosc. Math. J., 5:3 (2005), 633–667
Citation in format AMSBIB
\Bibitem{Nov05}
\by S.~P.~Novikov
\paper Topology of generic Hamiltonian foliations on Riemann surfaces
\jour Mosc. Math.~J.
\yr 2005
\vol 5
\issue 3
\pages 633--667
\mathnet{http://mi.mathnet.ru/mmj213}
\crossref{https://doi.org/10.17323/1609-4514-2005-5-3-633-667}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2241815}
\zmath{https://zbmath.org/?q=an:1109.37036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595500009}
Linking options:
  • https://www.mathnet.ru/eng/mmj213
  • https://www.mathnet.ru/eng/mmj/v5/i3/p633
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:521
    References:90
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024