Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2005, Volume 5, Number 3, Pages 613–631
DOI: https://doi.org/10.17323/1609-4514-2005-5-3-613-631
(Mi mmj212)
 

This article is cited in 30 scientific papers (total in 30 papers)

Viscosity limit of stationary distributions for the random forced Burgers equation

D. Gomeza, R. Iturriagab, K. M. Khanincd, P. Padillae

a Department of Mathematics, Instituto Superior Técnico
b Centro de Investigacion en Matematica
c L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
d University of Toronto
e National Autonomous University of Mexico
Full-text PDF Citations (30)
References:
Abstract: We prove convergence of stationary distributions for the randomly forced Burgers and Hamilton–Jacobi equations in the limit when viscosity tends to zero. It turns out that for all values of the viscosity $\nu$ there exists a unique (up to an additive constant) global stationary solution to the randomly forced Hamilton–Jacobi equation. The main result follows from the convergence of these solutions in a limit when $\nu$ tends to zero without changing its sign. The two limiting solutions (for different signs of the viscosity term) correspond to unique backward and forward viscosity solutions. Our approach, which is an extension of the previous work, is based on the stochastic version of Lax formula for solutions to the initial and final value problems for the viscous Hamilton–Jacobi equation.
Key words and phrases: Random Burgers equation, random Hamilton–Jacobi equation, convergence to viscosity solutions.
Received: October 23, 2005
Bibliographic databases:
MSC: 35L65, 37H10, 37D99
Language: English
Citation: D. Gomez, R. Iturriaga, K. M. Khanin, P. Padilla, “Viscosity limit of stationary distributions for the random forced Burgers equation”, Mosc. Math. J., 5:3 (2005), 613–631
Citation in format AMSBIB
\Bibitem{GomItuKha05}
\by D.~Gomez, R.~Iturriaga, K.~M.~Khanin, P.~Padilla
\paper Viscosity limit of stationary distributions for the random forced Burgers equation
\jour Mosc. Math.~J.
\yr 2005
\vol 5
\issue 3
\pages 613--631
\mathnet{http://mi.mathnet.ru/mmj212}
\crossref{https://doi.org/10.17323/1609-4514-2005-5-3-613-631}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2241814}
\zmath{https://zbmath.org/?q=an:1115.35081}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000208595500008}
Linking options:
  • https://www.mathnet.ru/eng/mmj212
  • https://www.mathnet.ru/eng/mmj/v5/i3/p613
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024